Chapter 3 Interval comparison: Ordered exploitation results

Here we present the results for best performances found by each selection scheme replicate on the exploitation rate diagnostic with our base configurations. For our base configuration, we assume 4 islands and a ring topology. When migrations occur, we swap two individuals (same position on each island) and guarantee that no solution can return to the same island. Best performance found refers to the largest average trait score found in a given population. Note that performance values fall between 0.0 and 100.0.

3.3 Truncation selection

Here we analyze how the different migration intervals affect truncation selection on the exploitation rate diagnostic.

3.3.3 Stats

Summary statistics for the first generation a satisfactory solution is found.

## # A tibble: 3 x 8
##   Interval count na_cnt   min median   mean   max   IQR
##   <fct>    <int>  <int> <int>  <dbl>  <dbl> <int> <dbl>
## 1 50         100      0 23617 25453  25405. 26920  950 
## 2 500        100      0 24669 26780. 26767. 28518 1318.
## 3 5000       100      0 25736 27512. 27446. 29337 1121.

Kruskal–Wallis test provides evidence of difference among selection schemes.

## 
##  Kruskal-Wallis rank sum test
## 
## data:  Generations by Interval
## Kruskal-Wallis chi-squared = 168.14, df = 2, p-value < 2.2e-16

Results for post-hoc Wilcoxon rank-sum test with a Bonferroni correction.

## 
##  Pairwise comparisons using Wilcoxon rank sum test with continuity correction 
## 
## data:  ssf$Generations and ssf$Interval 
## 
##      50      500    
## 500  < 2e-16 -      
## 5000 < 2e-16 1.8e-07
## 
## P value adjustment method: bonferroni

3.4 Tournament selection

Here we analyze how the different migration intervals affect tournament selection on the exploitation rate diagnostic.

3.4.3 Stats

Summary statistics for the first generation a satisfactory solution is found.

## # A tibble: 3 x 8
##   Interval count na_cnt   min median   mean   max   IQR
##   <fct>    <int>  <int> <int>  <dbl>  <dbl> <int> <dbl>
## 1 50         100      0 29313 32368. 32281. 34547 1474 
## 2 500        100      0 30589 34356. 34349. 36461 1564.
## 3 5000       100      0 32578 35082  35088. 37009 1392

Kruskal–Wallis test provides evidence of difference among selection schemes.

## 
##  Kruskal-Wallis rank sum test
## 
## data:  Generations by Interval
## Kruskal-Wallis chi-squared = 172.97, df = 2, p-value < 2.2e-16

Results for post-hoc Wilcoxon rank-sum test with a Bonferroni correction.

## 
##  Pairwise comparisons using Wilcoxon rank sum test with continuity correction 
## 
## data:  ssf$Generations and ssf$Interval 
## 
##      50      500    
## 500  < 2e-16 -      
## 5000 < 2e-16 5.9e-06
## 
## P value adjustment method: bonferroni

3.5 Lexicase selection

Here we analyze how the different migration intervals affect tournament selection on the exploitation rate diagnostic.

3.5.3 Stats

Summary statistics for the first generation a satisfactory solution is found.

## # A tibble: 3 x 8
##   Interval count na_cnt   min median   mean   max   IQR
##   <fct>    <int>  <int> <int>  <dbl>  <dbl> <int> <dbl>
## 1 50          70      0 42523 47526. 47195. 49938 2560.
## 2 500         18      0 46454 48378. 48402. 49847 1929 
## 3 5000         5      0 46227 48262  47980. 49992 1587

Kruskal–Wallis test provides evidence of difference among selection schemes.

## 
##  Kruskal-Wallis rank sum test
## 
## data:  Generations by Interval
## Kruskal-Wallis chi-squared = 7.1725, df = 2, p-value = 0.0277

Results for post-hoc Wilcoxon rank-sum test with a Bonferroni correction.

## 
##  Pairwise comparisons using Wilcoxon rank sum test with continuity correction 
## 
## data:  ssf$Generations and ssf$Interval 
## 
##      50    500  
## 500  0.027 -    
## 5000 1.000 1.000
## 
## P value adjustment method: bonferroni

3.5.5 Stats

Summary statistics for the first generation a satisfactory solution is found.

## # A tibble: 3 x 8
##   Interval count na_cnt   min median  mean   max    IQR
##   <fct>    <int>  <dbl> <dbl>  <dbl> <dbl> <dbl>  <dbl>
## 1 50         100      0  99.6   99.7  99.7  99.8 0.0545
## 2 500        100      0  99.5   99.6  99.6  99.7 0.0465
## 3 5000       100      0  99.5   99.6  99.6  99.7 0.0454

Kruskal–Wallis test provides evidence of difference among selection schemes.

## 
##  Kruskal-Wallis rank sum test
## 
## data:  VAL by Interval
## Kruskal-Wallis chi-squared = 143.15, df = 2, p-value < 2.2e-16

Results for post-hoc Wilcoxon rank-sum test with a Bonferroni correction.

## 
##  Pairwise comparisons using Wilcoxon rank sum test with continuity correction 
## 
## data:  best$VAL and best$Interval 
## 
##      50      500    
## 500  < 2e-16 -      
## 5000 < 2e-16 6.4e-08
## 
## P value adjustment method: bonferroni