Chapter 1 Introduction

This is the supplemental material associated with the 6th chapter in my dissertation.

1.1 Computer Setup

These analyses were conducted in the following computing environment:

##                _                           
## platform       x86_64-pc-linux-gnu         
## arch           x86_64                      
## os             linux-gnu                   
## system         x86_64, linux-gnu           
## status                                     
## major          4                           
## minor          2.3                         
## year           2023                        
## month          03                          
## day            15                          
## svn rev        83980                       
## language       R                           
## version.string R version 4.2.3 (2023-03-15)
## nickname       Shortstop Beagle

1.2 Experimental setup

Setting up required variables variables.

## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
## Loading required package: rlang
## Warning: The `size` argument of `element_rect()` is deprecated as of ggplot2 3.4.0.
## i Please use the `linewidth` argument instead.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.
## [1] "over time data"
## [1] "EA"
## [1] "IS"
## [1] "NMIS"
colnames(base_over_time)[colnames(base_over_time) == "SEL"] = 'Selection\nScheme'
base_over_time$Structure <- factor(base_over_time$Structure, levels = MODEL)
base_over_time$sel_pre = base_over_time$sel_pre * -1.0
base_over_time$`Population structure` <-
  with(base_over_time, ifelse(Structure == 'EA', 'Well-mixed',
                        ifelse(Structure == 'IS', 'Standard islands',
                               ifelse(Structure == 'NMIS', 'Isolated islands',''))))
base_over_time$`Population structure` <- factor(base_over_time$`Population structure`, levels = STRUCTURE)


colnames(mi50_over_time)[colnames(mi50_over_time) == "SEL"] = 'Selection\nScheme'
mi50_over_time$Structure <- factor(mi50_over_time$Structure, levels = MODEL)
mi50_over_time$sel_pre = mi50_over_time$sel_pre * -1.0
mi50_over_time$`Population structure` <-
  with(mi50_over_time, ifelse(Structure == 'EA', 'Well-mixed',
                              ifelse(Structure == 'IS', 'Standard islands',
                                     ifelse(Structure == 'NMIS', 'Isolated islands',''))))
mi50_over_time$`Population structure` <- factor(mi50_over_time$`Population structure`, levels = STRUCTURE)


colnames(mi5000_over_time)[colnames(mi5000_over_time) == "SEL"] = 'Selection\nScheme'
mi5000_over_time$Structure <- factor(mi5000_over_time$Structure, levels = MODEL)
mi5000_over_time$sel_pre = mi5000_over_time$sel_pre * -1.0
mi5000_over_time$`Population structure` <-
  with(mi5000_over_time, ifelse(Structure == 'EA', 'Well-mixed',
                              ifelse(Structure == 'IS', 'Standard islands',
                                     ifelse(Structure == 'NMIS', 'Isolated islands',''))))
mi5000_over_time$`Population structure` <- factor(mi5000_over_time$`Population structure`, levels = STRUCTURE)


# go through each diagnostic and collect best over time for cross comparison (cc)
base_best = data.frame()
mi50_best = data.frame()
mi5000_best = data.frame()
print('best data')
## [1] "best data"
## [1] "EA"
## [1] "IS"
## [1] "NMIS"
## [1] "ssf data"
## [1] "EA"
## [1] "IS"
## [1] "NMIS"