Chapter 5 Interval comparison: Multi-path exploration results

Here we present the results for the best performances and activation gene coverage generated by each selection scheme replicate on the multi-path exploration diagnostic. Best performance found refers to the largest average trait score found in a given population. Note that activation gene coverage values are gathered at the population-level. Activation gene coverage refers to the count of unique activation genes in a given population; this gives us a range of integers between 0 and 100.

5.3 Truncation selection

Here we analyze how the different population structures affect truncation selection (size 8) on the contradictory objectives diagnostic.

5.3.1 Performance

5.3.1.2 Best performance

Best performancefound throughout the 50,000 generations.

5.3.1.2.1 Stats

Summary statistics for the first generation a best performance found.

## # A tibble: 3 x 8
##   Interval count na_cnt   min median  mean   max   IQR
##   <fct>    <int>  <int> <dbl>  <dbl> <dbl> <dbl> <dbl>
## 1 50         100      0   5     61.0  55.6  99.9  42.0
## 2 500        100      0  11     56.0  58.3  99.9  44.5
## 3 5000       100      0  25.0   82.5  79.7  99.9  20.2

Kruskal–Wallis test provides evidence of difference among selection schemes.

## 
##  Kruskal-Wallis rank sum test
## 
## data:  VAL by Interval
## Kruskal-Wallis chi-squared = 51.085, df = 2, p-value = 8.073e-12

Results for post-hoc Wilcoxon rank-sum test with a Bonferroni correction.

## 
##  Pairwise comparisons using Wilcoxon rank sum test with continuity correction 
## 
## data:  performance$VAL and performance$Interval 
## 
##      50      500    
## 500  0.87    -      
## 5000 1.9e-10 5.5e-09
## 
## P value adjustment method: bonferroni

5.3.1.3 Final performance

Best performance is found throughout in final generation.

5.3.1.3.1 Stats

Summary statistics for the best performance is found in final generation.

## # A tibble: 3 x 8
##   Interval count na_cnt   min median  mean   max   IQR
##   <fct>    <int>  <int> <dbl>  <dbl> <dbl> <dbl> <dbl>
## 1 50         100      0   5     61.0  55.6  99.9  42.0
## 2 500        100      0  11     56.0  58.3  99.9  44.5
## 3 5000       100      0  25.0   82.5  79.7  99.9  20.2

Kruskal–Wallis test provides evidence of difference among selection schemes.

## 
##  Kruskal-Wallis rank sum test
## 
## data:  pop_fit_max by Interval
## Kruskal-Wallis chi-squared = 51.085, df = 2, p-value = 8.073e-12

Results for post-hoc Wilcoxon rank-sum test with a Bonferroni correction.

## 
##  Pairwise comparisons using Wilcoxon rank sum test with continuity correction 
## 
## data:  performance$pop_fit_max and performance$Interval 
## 
##      50      500    
## 500  0.87    -      
## 5000 1.9e-10 5.5e-09
## 
## P value adjustment method: bonferroni

5.3.2 Activation gene coverage

Activation gene coverage analysis.

5.3.2.2 End of 50,000 generations

Activation gene coverage in the population at the end of 50,000 generations.

5.3.2.2.1 Stats

Summary statistics for activation gene coverage.

## # A tibble: 3 x 8
##   Interval count na_cnt   min median  mean   max   IQR
##   <fct>    <int>  <int> <int>  <dbl> <dbl> <int> <dbl>
## 1 50         100      0     1      2  1.95     3     0
## 2 500        100      0     1      2  2.01     3     0
## 3 5000       100      0     1      2  2.02     3     0

Kruskal–Wallis test provides evidence of no difference among activation gene coverage.

## 
##  Kruskal-Wallis rank sum test
## 
## data:  pop_act_cov by Interval
## Kruskal-Wallis chi-squared = 4.3029, df = 2, p-value = 0.1163

5.4 Tournament selection

Here we analyze how the different population structures affect tournament selection (size 8) on the contradictory objectives diagnostic.

5.4.1 Performance

5.4.1.2 Best performance

Best performance is found throughout the 50,000 generations.

5.4.1.2.1 Stats

Summary statistics for the best performance found.

## # A tibble: 3 x 8
##   Interval count na_cnt   min median  mean   max   IQR
##   <fct>    <int>  <int> <dbl>  <dbl> <dbl> <dbl> <dbl>
## 1 50         100      0   4     58.5  56.7  99.9  45.5
## 2 500        100      0  12     59.0  57.1  99.9  43.5
## 3 5000       100      0  23.0   82.9  79.5  99.8  23.2

Kruskal–Wallis test provides evidence of difference among selection schemes.

## 
##  Kruskal-Wallis rank sum test
## 
## data:  VAL by Interval
## Kruskal-Wallis chi-squared = 50.052, df = 2, p-value = 1.353e-11

Results for post-hoc Wilcoxon rank-sum test with a Bonferroni correction.

## 
##  Pairwise comparisons using Wilcoxon rank sum test with continuity correction 
## 
## data:  performance$VAL and performance$Interval 
## 
##      50      500    
## 500  1       -      
## 5000 2.6e-09 7.4e-10
## 
## P value adjustment method: bonferroni

5.4.1.3 Final performance

Best performance is found in final generation.

5.4.1.3.1 Stats

Summary statistics for best performance is found in final generation.

## # A tibble: 3 x 8
##   Interval count na_cnt   min median  mean   max   IQR
##   <fct>    <int>  <int> <dbl>  <dbl> <dbl> <dbl> <dbl>
## 1 50         100      0   4     58.5  56.7  99.9  45.5
## 2 500        100      0  12     59.0  57.1  99.9  43.5
## 3 5000       100      0  23.0   82.9  79.5  99.8  23.2

Kruskal–Wallis test provides evidence of difference among selection schemes.

## 
##  Kruskal-Wallis rank sum test
## 
## data:  pop_fit_max by Interval
## Kruskal-Wallis chi-squared = 50.052, df = 2, p-value = 1.353e-11

Results for post-hoc Wilcoxon rank-sum test with a Bonferroni correction.

## 
##  Pairwise comparisons using Wilcoxon rank sum test with continuity correction 
## 
## data:  performance$pop_fit_max and performance$Interval 
## 
##      50      500    
## 500  1       -      
## 5000 2.6e-09 7.4e-10
## 
## P value adjustment method: bonferroni

5.4.2 Activation gene coverage

Activation gene coverage analysis.

5.4.2.2 End of 50,000 generations

Activation gene coverage in the population at the end of 50,000 generations.

5.4.2.2.1 Stats

Summary statistics for activation gene coverage.

## # A tibble: 3 x 8
##   Interval count na_cnt   min median  mean   max   IQR
##   <fct>    <int>  <int> <int>  <dbl> <dbl> <int> <dbl>
## 1 50         100      0     1      2  2.03     3     0
## 2 500        100      0     1      2  2.05     3     0
## 3 5000       100      0     1      2  2.01     3     0

Kruskal–Wallis test provides evidence of no difference among activation gene coverage.

## 
##  Kruskal-Wallis rank sum test
## 
## data:  pop_act_cov by Interval
## Kruskal-Wallis chi-squared = 1.299, df = 2, p-value = 0.5223

5.5 Lexicase selection

Here we analyze how the different population structures affect standard lexicase selection on the contradictory objectives diagnostic.

5.5.1 Performance

5.5.1.2 Best performance

Best performance is found throughout in final generation.

5.5.1.2.1 Stats

Summary statistics for the best performance found.

## # A tibble: 3 x 8
##   Interval count na_cnt   min median  mean   max   IQR
##   <fct>    <int>  <int> <dbl>  <dbl> <dbl> <dbl> <dbl>
## 1 50         100      0  74.5   86.5  86.1  96.8  7.18
## 2 5000       100      0  66.5   76.3  76.4  85.5  6.01
## 3 500        100      0  61.0   73.9  74.1  87.4  7.42

Kruskal–Wallis test provides evidence of difference among selection schemes.

## 
##  Kruskal-Wallis rank sum test
## 
## data:  VAL by Interval
## Kruskal-Wallis chi-squared = 155.15, df = 2, p-value < 2.2e-16

Results for post-hoc Wilcoxon rank-sum test with a Bonferroni correction.

## 
##  Pairwise comparisons using Wilcoxon rank sum test with continuity correction 
## 
## data:  performance$VAL and performance$Interval 
## 
##      50     5000  
## 5000 <2e-16 -     
## 500  <2e-16 0.0013
## 
## P value adjustment method: bonferroni

5.5.1.3 Final performance

Best performance is found throughout in final generation.

5.5.1.3.1 Stats

Summary statistics for the best performance is found throughout in final generation..

## # A tibble: 3 x 8
##   Interval count na_cnt   min median  mean   max   IQR
##   <fct>    <int>  <int> <dbl>  <dbl> <dbl> <dbl> <dbl>
## 1 50         100      0  65.8   84.4  83.9  95.9  8.35
## 2 5000       100      0  58.6   73.4  73.9  85.5  6.47
## 3 500        100      0  57.7   69.5  70.6  87.4  8.30

Kruskal–Wallis test provides evidence of difference among selection schemes.

## 
##  Kruskal-Wallis rank sum test
## 
## data:  pop_fit_max by Interval
## Kruskal-Wallis chi-squared = 140.97, df = 2, p-value < 2.2e-16

Results for post-hoc Wilcoxon rank-sum test with a Bonferroni correction.

## 
##  Pairwise comparisons using Wilcoxon rank sum test with continuity correction 
## 
## data:  performance$pop_fit_max and performance$Interval 
## 
##      50      5000   
## 5000 < 2e-16 -      
## 500  < 2e-16 3.8e-05
## 
## P value adjustment method: bonferroni

5.5.2 Activation gene coverage

Activation gene coverage analysis.

5.5.2.2 End of 50,000 generations

Activation gene coverage in the population at the end of 50,000 generations.

5.5.2.2.1 Stats

Summary statistics for activation gene coverage.

## # A tibble: 3 x 8
##   Interval count na_cnt   min median  mean   max   IQR
##   <fct>    <int>  <int> <int>  <dbl> <dbl> <int> <dbl>
## 1 50         100      0    10     15  15.6    24     3
## 2 500        100      0    12     17  17.3    26     3
## 3 5000       100      0    19     25  24.8    32     4

Kruskal–Wallis test provides evidence of difference among activation gene coverage.

## 
##  Kruskal-Wallis rank sum test
## 
## data:  pop_act_cov by Interval
## Kruskal-Wallis chi-squared = 198.08, df = 2, p-value < 2.2e-16

Results for post-hoc Wilcoxon rank-sum test with a Bonferroni correction on activation gene coverage.

## 
##  Pairwise comparisons using Wilcoxon rank sum test with continuity correction 
## 
## data:  coverage$pop_act_cov and coverage$Interval 
## 
##      50      500    
## 500  1.3e-07 -      
## 5000 < 2e-16 < 2e-16
## 
## P value adjustment method: bonferroni