Chapter 2 Interval comparison: Exploitation rate results

Here we present the results for best performances found by each selection scheme replicate on the exploitation rate diagnostic with our base configurations. For our base configuration, we assume 4 islands and a ring topology. When migrations occur, we swap two individuals (same position on each island) and guarantee that no solution can return to the same island. Best performance found refers to the largest average trait score found in a given population. Note that performance values fall between 0.0 and 100.0.

2.3 Truncation selection

Here we analyze how the different migration intervals affect truncation selection on the exploitation rate diagnostic.

2.3.3 Stats

Summary statistics for the first generation a satisfactory solution is found.

## # A tibble: 3 x 8
##   Interval count na_cnt   min median  mean   max   IQR
##   <fct>    <int>  <int> <int>  <dbl> <dbl> <int> <dbl>
## 1 50         100      0  4597  4684. 4684.  4757  36.5
## 2 500        100      0  4680  4752. 4754.  4839  25  
## 3 5000       100      0  4718  4788. 4786.  4834  40

Kruskal–Wallis test provides evidence of difference among selection schemes.

## 
##  Kruskal-Wallis rank sum test
## 
## data:  Generations by Interval
## Kruskal-Wallis chi-squared = 216.76, df = 2, p-value < 2.2e-16

Results for post-hoc Wilcoxon rank-sum test with a Bonferroni correction.

## 
##  Pairwise comparisons using Wilcoxon rank sum test with continuity correction 
## 
## data:  ssf$Generations and ssf$Interval 
## 
##      50      500    
## 500  < 2e-16 -      
## 5000 < 2e-16 7.6e-15
## 
## P value adjustment method: bonferroni

2.4 Tournament selection

Here we analyze how the different migration intervals affect tournament selection on the exploitation rate diagnostic.

2.4.3 Stats

Summary statistics for the first generation a satisfactory solution is found.

## # A tibble: 3 x 8
##   Interval count na_cnt   min median  mean   max   IQR
##   <fct>    <int>  <int> <int>  <dbl> <dbl> <int> <dbl>
## 1 50         100      0  5655   5757 5765.  5882  56  
## 2 500        100      0  5741   5862 5862.  5979  51.2
## 3 5000       100      0  5819   5900 5903.  5973  40.8

Kruskal–Wallis test provides evidence of difference among selection schemes.

## 
##  Kruskal-Wallis rank sum test
## 
## data:  Generations by Interval
## Kruskal-Wallis chi-squared = 203.85, df = 2, p-value < 2.2e-16

Results for post-hoc Wilcoxon rank-sum test with a Bonferroni correction.

## 
##  Pairwise comparisons using Wilcoxon rank sum test with continuity correction 
## 
## data:  ssf$Generations and ssf$Interval 
## 
##      50     500  
## 500  <2e-16 -    
## 5000 <2e-16 1e-12
## 
## P value adjustment method: bonferroni

2.5 Lexicase selection

Here we analyze how the different migration intervals affect tournament selection on the exploitation rate diagnostic.

2.5.3 Stats

Summary statistics for the first generation a satisfactory solution is found.

## # A tibble: 3 x 8
##   Interval count na_cnt   min median   mean   max   IQR
##   <fct>    <int>  <int> <int>  <dbl>  <dbl> <int> <dbl>
## 1 50         100      0 24027 27320  28031. 35360 2194.
## 2 500        100      0 23649 27080. 27635. 38266 2628.
## 3 5000       100      0 24579 27304. 27591. 34039 1903.

Kruskal–Wallis test provides evidence of difference among selection schemes.

## 
##  Kruskal-Wallis rank sum test
## 
## data:  Generations by Interval
## Kruskal-Wallis chi-squared = 3.1203, df = 2, p-value = 0.2101

Results for post-hoc Wilcoxon rank-sum test with a Bonferroni correction.

## 
##  Pairwise comparisons using Wilcoxon rank sum test with continuity correction 
## 
## data:  ssf$Generations and ssf$Interval 
## 
##      50   500 
## 500  0.27 -   
## 5000 0.73 1.00
## 
## P value adjustment method: bonferroni