Chapter 10 Nondominated sorting

We present the results from our parameter sweeep on nondominated sorting. 50 replicates are conducted for each sigma parameter value explored. Note that when sigma = 0.0, performance with no similarity penalty and stochastic remainder selection is used to identify parent solutions.

10.1 Exploitation rate results

Here we present the results for best performances found by each nondominated sorting sigma value replicate on the exploitation rate diagnostic. Best performance found refers to the largest average trait score found in a given population. 50 replicates are conducted for each sigma parameter value explored. Note that when sigma = 0.0, no similarity penalty is used, and only stochastic remainder selection is used to identify parent solutions.

10.1.2 Best performance throughout

The best performance found throughout 50,000 generations.

10.1.2.1 Stats

Summary statistics for the best performance found.

## # A tibble: 7 x 8
##   Sigma count na_cnt   min median  mean   max   IQR
##   <fct> <int>  <int> <dbl>  <dbl> <dbl> <dbl> <dbl>
## 1 0        50      0  17.9   18.6  18.7  19.6 0.568
## 2 0.1      50      0  17.9   18.6  18.6  19.3 0.482
## 3 0.3      50      0  17.9   18.4  18.5  19.5 0.516
## 4 0.6      50      0  18.0   18.7  18.7  19.6 0.542
## 5 1.2      50      0  17.8   18.7  18.8  20.9 0.481
## 6 2.5      50      0  17.8   18.5  18.6  19.7 0.572
## 7 5        50      0  29.7   33.0  33.2  36.9 2.17

Kruskal–Wallis test provides evidence of significant differences among sigma values on the best performance found.

## 
##  Kruskal-Wallis rank sum test
## 
## data:  val by Sigma
## Kruskal-Wallis chi-squared = 135.65, df = 6, p-value < 2.2e-16

Results for post-hoc Wilcoxon rank-sum test with a Bonferroni correction on the best performance found.

## 
##  Pairwise comparisons using Wilcoxon rank sum test with continuity correction 
## 
## data:  performance$val and performance$Sigma 
## 
##     0    0.1  0.3  0.6  1.2  2.5 
## 0.1 1.00 -    -    -    -    -   
## 0.3 0.47 1.00 -    -    -    -   
## 0.6 1.00 1.00 1.00 -    -    -   
## 1.2 1.00 1.00 1.00 1.00 -    -   
## 2.5 1.00 1.00 1.00 1.00 1.00 -   
## 5   1.00 1.00 1.00 1.00 1.00 1.00
## 
## P value adjustment method: bonferroni

10.1.3 Multi-valley crossing

10.1.3.1 Performance comparison

Best performances in the population at 40,000 and 50,000 generations.

10.1.3.2 Stats

Summary statistics for the performance of the best performance at 40,000 and 50,000 generations.

## `summarise()` has grouped output by 'Sigma'. You can override using the
## `.groups` argument.
## # A tibble: 14 x 9
## # Groups:   Sigma [7]
##    Sigma Generation count na_cnt   min median  mean   max   IQR
##    <fct> <fct>      <int>  <int> <dbl>  <dbl> <dbl> <dbl> <dbl>
##  1 0     50000         50      0  14.4   15.0  15.0  15.9 0.435
##  2 0     40000         50      0  12.8   13.5  13.5  14.5 0.471
##  3 0.1   50000         50      0  14.2   15.1  15.1  16.4 0.568
##  4 0.1   40000         50      0  12.8   13.5  13.5  14.5 0.452
##  5 0.3   50000         50      0  14.3   15.0  15.0  15.8 0.327
##  6 0.3   40000         50      0  12.8   13.4  13.4  14.0 0.516
##  7 0.6   50000         50      0  14.2   14.8  14.9  16.0 0.514
##  8 0.6   40000         50      0  12.8   13.2  13.3  14.1 0.327
##  9 1.2   50000         50      0  14.4   15.0  15.0  16.1 0.411
## 10 1.2   40000         50      0  12.8   13.3  13.4  14.7 0.444
## 11 2.5   50000         50      0  14.4   15.1  15.1  16.9 0.454
## 12 2.5   40000         50      0  12.8   13.5  13.5  14.9 0.444
## 13 5     50000         50      0  14.5   16.5  16.4  18.1 0.832
## 14 5     40000         50      0  14.3   15.2  15.3  16.8 0.644

Sigma 0.0

## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  filter(slices, Sigma == 0 & Generation == 50000)$pop_fit_max and filter(slices, Sigma == 0 & Generation == 40000)$pop_fit_max
## W = 2496, p-value < 2.2e-16
## alternative hypothesis: true location shift is not equal to 0

Sigma 0.1

## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  filter(slices, Sigma == 0.1 & Generation == 50000)$pop_fit_max and filter(slices, Sigma == 0.1 & Generation == 40000)$pop_fit_max
## W = 2485, p-value < 2.2e-16
## alternative hypothesis: true location shift is not equal to 0

Sigma 0.3

## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  filter(slices, Sigma == 0.3 & Generation == 50000)$pop_fit_max and filter(slices, Sigma == 0.3 & Generation == 40000)$pop_fit_max
## W = 2500, p-value < 2.2e-16
## alternative hypothesis: true location shift is not equal to 0

Sigma 0.6

## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  filter(slices, Sigma == 0.6 & Generation == 50000)$pop_fit_max and filter(slices, Sigma == 0.6 & Generation == 40000)$pop_fit_max
## W = 2500, p-value < 2.2e-16
## alternative hypothesis: true location shift is not equal to 0

Sigma 1.2

## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  filter(slices, Sigma == 1.2 & Generation == 50000)$pop_fit_max and filter(slices, Sigma == 1.2 & Generation == 40000)$pop_fit_max
## W = 2493, p-value < 2.2e-16
## alternative hypothesis: true location shift is not equal to 0

Sigma 2.5

## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  filter(slices, Sigma == 2.5 & Generation == 50000)$pop_fit_max and filter(slices, Sigma == 2.5 & Generation == 40000)$pop_fit_max
## W = 2465, p-value < 2.2e-16
## alternative hypothesis: true location shift is not equal to 0

Sigma 5.0

## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  filter(slices, Sigma == 5 & Generation == 50000)$pop_fit_max and filter(slices, Sigma == 5 & Generation == 40000)$pop_fit_max
## W = 2232, p-value = 1.321e-11
## alternative hypothesis: true location shift is not equal to 0

10.2 Ordered exploitation results

Here we present the results for best performances found by each nondominated sorting sigma value replicate on the ordered exploitation diagnostic. Best performance found refers to the largest average trait score found in a given population. 50 replicates are conducted for each sigma parameter value explored. Note that when sigma = 0.0, no similarity penalty is used, and only stochastic remainder selection is used to identify parent solutions.

10.2.2 Best performance throughout

The best performance found throughout 50,000 generations.

10.2.2.1 Stats

Summary statistics about the best performance found.

## # A tibble: 7 x 8
##   Sigma count na_cnt   min median  mean   max   IQR
##   <fct> <int>  <int> <dbl>  <dbl> <dbl> <dbl> <dbl>
## 1 0        50      0  4.63   5.32  5.32  6.04 0.313
## 2 0.1      50      0 23.3   25.6  25.6  27.1  1.20 
## 3 0.3      50      0 23.7   26.0  25.9  27.7  1.17 
## 4 0.6      50      0 24.9   26.6  26.8  29.1  1.26 
## 5 1.2      50      0 25.7   27.6  27.6  29.5  1.59 
## 6 2.5      50      0 27.2   29.0  29.0  31.0  1.47 
## 7 5        50      0 30.9   33.7  33.8  36.8  1.56

Kruskal–Wallis test provides evidence of statistical differences for the best performance found in the pouplation throughout 50,000 generations.

## 
##  Kruskal-Wallis rank sum test
## 
## data:  val by Sigma
## Kruskal-Wallis chi-squared = 301.08, df = 6, p-value < 2.2e-16

Results for post-hoc Wilcoxon rank-sum test with a Bonferroni correction on the best performance found in the pouplation throughout 50,000 generations.

## 
##  Pairwise comparisons using Wilcoxon rank sum test with continuity correction 
## 
## data:  performance$val and performance$Sigma 
## 
##     0 0.1 0.3 0.6 1.2 2.5
## 0.1 1 -   -   -   -   -  
## 0.3 1 1   -   -   -   -  
## 0.6 1 1   1   -   -   -  
## 1.2 1 1   1   1   -   -  
## 2.5 1 1   1   1   1   -  
## 5   1 1   1   1   1   1  
## 
## P value adjustment method: bonferroni

10.2.3 Multi-valley crossing

10.2.3.1 Performance comparison

Best performances in the population at 40,000 and 50,000 generations.

## Warning: The following aesthetics were dropped during statistical transformation:
## colour, shape
## i This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## i Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation:
## colour, shape
## i This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## i Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?

10.2.3.2 Stats

Summary statistics for the performance of the best performance at 40,000 and 50,000 generations.

## `summarise()` has grouped output by 'Sigma'. You can override using the
## `.groups` argument.
## # A tibble: 14 x 9
## # Groups:   Sigma [7]
##    Sigma Generation count na_cnt   min median  mean   max   IQR
##    <fct> <fct>      <int>  <int> <dbl>  <dbl> <dbl> <dbl> <dbl>
##  1 0     50000         50      0  4.18   4.72  4.73  5.27 0.250
##  2 0     40000         50      0  3.69   4.09  4.11  4.60 0.208
##  3 0.1   50000         50      0  1.38   1.62  1.61  1.98 0.152
##  4 0.1   40000         50      0  1.34   1.58  1.59  1.91 0.217
##  5 0.3   50000         50      0  1.38   1.63  1.61  1.96 0.239
##  6 0.3   40000         50      0  1.37   1.58  1.58  1.88 0.173
##  7 0.6   50000         50      0  1.33   1.55  1.58  1.84 0.163
##  8 0.6   40000         50      0  1.30   1.54  1.56  1.88 0.147
##  9 1.2   50000         50      0  1.45   1.61  1.60  1.79 0.140
## 10 1.2   40000         50      0  1.41   1.59  1.59  1.78 0.132
## 11 2.5   50000         50      0  1.37   1.58  1.58  1.81 0.107
## 12 2.5   40000         50      0  1.41   1.60  1.61  1.88 0.151
## 13 5     50000         50      0  1.55   1.73  1.75  2.04 0.148
## 14 5     40000         50      0  1.54   1.78  1.78  2.10 0.149

Sigma 0.0

## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  filter(slices, Sigma == 0 & Generation == 50000)$pop_fit_max and filter(slices, Sigma == 0 & Generation == 40000)$pop_fit_max
## W = 2462, p-value < 2.2e-16
## alternative hypothesis: true location shift is not equal to 0

Sigma 0.1

## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  filter(slices, Sigma == 0.1 & Generation == 50000)$pop_fit_max and filter(slices, Sigma == 0.1 & Generation == 40000)$pop_fit_max
## W = 1355, p-value = 0.4713
## alternative hypothesis: true location shift is not equal to 0

Sigma 0.3

## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  filter(slices, Sigma == 0.3 & Generation == 50000)$pop_fit_max and filter(slices, Sigma == 0.3 & Generation == 40000)$pop_fit_max
## W = 1413, p-value = 0.2626
## alternative hypothesis: true location shift is not equal to 0

Sigma 0.6

## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  filter(slices, Sigma == 0.6 & Generation == 50000)$pop_fit_max and filter(slices, Sigma == 0.6 & Generation == 40000)$pop_fit_max
## W = 1392.5, p-value = 0.3276
## alternative hypothesis: true location shift is not equal to 0

Sigma 1.2

## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  filter(slices, Sigma == 1.2 & Generation == 50000)$pop_fit_max and filter(slices, Sigma == 1.2 & Generation == 40000)$pop_fit_max
## W = 1375, p-value = 0.3907
## alternative hypothesis: true location shift is not equal to 0

Sigma 2.5

## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  filter(slices, Sigma == 2.5 & Generation == 50000)$pop_fit_max and filter(slices, Sigma == 2.5 & Generation == 40000)$pop_fit_max
## W = 1059, p-value = 0.1891
## alternative hypothesis: true location shift is not equal to 0

Sigma 5.0

## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  filter(slices, Sigma == 5 & Generation == 50000)$pop_fit_max and filter(slices, Sigma == 5 & Generation == 40000)$pop_fit_max
## W = 980, p-value = 0.06319
## alternative hypothesis: true location shift is not equal to 0

10.3 Contraditory objectives diagnostic

Here we present the results for satisfactory trait coverage and activation gene coverage found by each nondominated sorting sigma value replicate on the ordered exploitation diagnostic. Satisfactory trait coverage refers to the count of unique satisfied DIMENSIONALITY in the population, while activation gene coverage refers to the count of unique activation genes in the population. Note that both coverage values fall between 0 and 100.

10.3.1 Satisfactory trait coverage

Satisfactory trait coverage analysis.

10.3.1.2 Best coverage throughout

Best satisfactory trait coverage throughout 50,000 generations.

10.3.1.2.1 Stats

Summary statistics for the best satisfactory trait coverage.

## # A tibble: 7 x 8
##   Sigma count na_cnt   min median  mean   max   IQR
##   <fct> <int>  <int> <dbl>  <dbl> <dbl> <dbl> <dbl>
## 1 0        50      0    28   44    42.8    54  8.5 
## 2 0.1      50      0    85   91    91.4    99  5   
## 3 0.3      50      0    85   91    91.8   100  5   
## 4 0.6      50      0    83   90.5  90.9   100  5   
## 5 1.2      50      0    85   92    91.8   100  6.75
## 6 2.5      50      0    85   91    90.7   100  6   
## 7 5        50      0    48   78.5  78.6    88  9.5

Kruskal–Wallis test provides evidence of statistical difference among the best satisfactory trait coverage.

## 
##  Kruskal-Wallis rank sum test
## 
## data:  val by Sigma
## Kruskal-Wallis chi-squared = 214.97, df = 6, p-value < 2.2e-16

Results for post-hoc Wilcoxon rank-sum test with a Bonferroni correction on the best satisfactory trait coverage.

## 
##  Pairwise comparisons using Wilcoxon rank sum test with continuity correction 
## 
## data:  coverage$val and coverage$Sigma 
## 
##     0      0.1 0.3 0.6 1.2 2.5
## 0.1 <2e-16 -   -   -   -   -  
## 0.3 <2e-16 1   -   -   -   -  
## 0.6 <2e-16 1   1   -   -   -  
## 1.2 <2e-16 1   1   1   -   -  
## 2.5 <2e-16 1   1   1   1   -  
## 5   <2e-16 1   1   1   1   1  
## 
## P value adjustment method: bonferroni

10.3.1.3 End of 50,000 generations

Satisfactory trait coverage in the population at the end of 50,000 generations.

10.3.1.3.1 Stats

Summary statistics for satisfactory trait coverage in the population at the end of 50,000 generations.

## # A tibble: 7 x 8
##   Sigma count na_cnt   min median  mean   max   IQR
##   <fct> <int>  <int> <int>  <dbl> <dbl> <int> <dbl>
## 1 0        50      0     1      1  1.28     2     1
## 2 0.1      50      0    82     86 86.5     91     2
## 3 0.3      50      0    82     86 86.4     92     3
## 4 0.6      50      0    82     86 86.2     93     4
## 5 1.2      50      0    82     86 86.4     91     3
## 6 2.5      50      0    83     86 86.3     92     3
## 7 5        50      0    48     78 77.7     86     9

Kruskal–Wallis test provides evidence of statistical difference among satisfactory trait coverage in the population at the end of 50,000 generations.

## 
##  Kruskal-Wallis rank sum test
## 
## data:  pop_uni_obj by Sigma
## Kruskal-Wallis chi-squared = 205.41, df = 6, p-value < 2.2e-16

Results for post-hoc Wilcoxon rank-sum test with a Bonferroni correction on the best satisfactory trait coverage in the population at the end of 50,000 generations.

## 
##  Pairwise comparisons using Wilcoxon rank sum test with continuity correction 
## 
## data:  coverage$pop_uni_obj and coverage$Sigma 
## 
##     0      0.1 0.3 0.6 1.2 2.5
## 0.1 <2e-16 -   -   -   -   -  
## 0.3 <2e-16 1   -   -   -   -  
## 0.6 <2e-16 1   1   -   -   -  
## 1.2 <2e-16 1   1   1   -   -  
## 2.5 <2e-16 1   1   1   1   -  
## 5   <2e-16 1   1   1   1   1  
## 
## P value adjustment method: bonferroni

10.3.2 Activation gene coverage

Here we analyze the activation gene coverage for each parameter replicate on the contradictory objectives diagnostic.

10.3.2.2 End of 50,000 generations

Activation gene coverage in the population at the end of 50,000 generations.

10.3.2.2.1 Stats

Summary statistics for the best activation gene coverage in the population at the end of 50,000 generations.

## # A tibble: 7 x 8
##   Sigma count na_cnt   min median  mean   max   IQR
##   <fct> <int>  <int> <int>  <dbl> <dbl> <int> <dbl>
## 1 0        50      0     1      1   1.3     2     1
## 2 0.1      50      0    82     86  86.5    91     2
## 3 0.3      50      0    82     86  86.4    92     3
## 4 0.6      50      0    82     86  86.2    93     4
## 5 1.2      50      0    82     86  86.4    91     3
## 6 2.5      50      0    83     86  86.3    92     3
## 7 5        50      0    48     78  77.7    86     9

Kruskal–Wallis test provides evidence of no statistical difference among activation gene coverage in the population at the end of 50,000 generations.

## 
##  Kruskal-Wallis rank sum test
## 
## data:  uni_str_pos by Sigma
## Kruskal-Wallis chi-squared = 205.39, df = 6, p-value < 2.2e-16

Results for post-hoc Wilcoxon rank-sum test with a Bonferroni correction on the best satisfactory trait coverage.

## 
##  Pairwise comparisons using Wilcoxon rank sum test with continuity correction 
## 
## data:  coverage$uni_str_pos and coverage$Sigma 
## 
##     0      0.1 0.3 0.6 1.2 2.5
## 0.1 <2e-16 -   -   -   -   -  
## 0.3 <2e-16 1   -   -   -   -  
## 0.6 <2e-16 1   1   -   -   -  
## 1.2 <2e-16 1   1   1   -   -  
## 2.5 <2e-16 1   1   1   1   -  
## 5   <2e-16 1   1   1   1   1  
## 
## P value adjustment method: bonferroni

10.3.3 Multi-valley crossing

10.3.3.2 Satisfactory trait coverage comparison

Best performances in the population at 40,000 and 50,000 generations.

10.3.3.2.1 Stats

Summary statistics for the performance of the best performance at 40,000 and 50,000 generations.

## `summarise()` has grouped output by 'Sigma'. You can override using the
## `.groups` argument.
## # A tibble: 14 x 9
## # Groups:   Sigma [7]
##    Sigma Generation count na_cnt   min median  mean   max   IQR
##    <fct> <fct>      <int>  <int> <int>  <dbl> <dbl> <int> <dbl>
##  1 0     50000         50      0     0      0     0     0     0
##  2 0     40000         50      0     0      0     0     0     0
##  3 0.1   50000         50      0     0      0     0     0     0
##  4 0.1   40000         50      0     0      0     0     0     0
##  5 0.3   50000         50      0     0      0     0     0     0
##  6 0.3   40000         50      0     0      0     0     0     0
##  7 0.6   50000         50      0     0      0     0     0     0
##  8 0.6   40000         50      0     0      0     0     0     0
##  9 1.2   50000         50      0     0      0     0     0     0
## 10 1.2   40000         50      0     0      0     0     0     0
## 11 2.5   50000         50      0     0      0     0     0     0
## 12 2.5   40000         50      0     0      0     0     0     0
## 13 5     50000         50      0     0      0     0     0     0
## 14 5     40000         50      0     0      0     0     0     0

Sigma 0.0

## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  filter(slices, Sigma == 0 & Generation == 50000)$pop_uni_obj and filter(slices, Sigma == 0 & Generation == 40000)$pop_uni_obj
## W = 1250, p-value = NA
## alternative hypothesis: true location shift is not equal to 0

Sigma 0.1

## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  filter(slices, Sigma == 0.1 & Generation == 50000)$pop_uni_obj and filter(slices, Sigma == 0.1 & Generation == 40000)$pop_uni_obj
## W = 1250, p-value = NA
## alternative hypothesis: true location shift is not equal to 0

Sigma 0.3

## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  filter(slices, Sigma == 0.3 & Generation == 50000)$pop_uni_obj and filter(slices, Sigma == 0.3 & Generation == 40000)$pop_uni_obj
## W = 1250, p-value = NA
## alternative hypothesis: true location shift is not equal to 0

Sigma 0.6

## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  filter(slices, Sigma == 0.6 & Generation == 50000)$pop_uni_obj and filter(slices, Sigma == 0.6 & Generation == 40000)$pop_uni_obj
## W = 1250, p-value = NA
## alternative hypothesis: true location shift is not equal to 0

Sigma 1.2

## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  filter(slices, Sigma == 1.2 & Generation == 50000)$pop_uni_obj and filter(slices, Sigma == 1.2 & Generation == 40000)$pop_uni_obj
## W = 1250, p-value = NA
## alternative hypothesis: true location shift is not equal to 0

Sigma 2.5

## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  filter(slices, Sigma == 2.5 & Generation == 50000)$pop_uni_obj and filter(slices, Sigma == 2.5 & Generation == 40000)$pop_uni_obj
## W = 1250, p-value = NA
## alternative hypothesis: true location shift is not equal to 0

Sigma 5.0

## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  filter(slices, Sigma == 5 & Generation == 50000)$pop_uni_obj and filter(slices, Sigma == 5 & Generation == 40000)$pop_uni_obj
## W = 1250, p-value = NA
## alternative hypothesis: true location shift is not equal to 0

10.3.3.4 Activation gene coverage comparison

Activation gene coverage in the population at 40,000 and 50,000 generations.

10.3.3.4.1 Stats

Summary statistics for the activation gene coverage at 40,000 and 50,000 generations.

## `summarise()` has grouped output by 'Sigma'. You can override using the
## `.groups` argument.
## # A tibble: 14 x 9
## # Groups:   Sigma [7]
##    Sigma Generation count na_cnt   min median  mean   max   IQR
##    <fct> <fct>      <int>  <int> <int>  <dbl> <dbl> <int> <dbl>
##  1 0     50000         50      0    61   76    74.4    86  6.75
##  2 0     40000         50      0    60   77.5  77.4    88 11.8 
##  3 0.1   50000         50      0   100  100   100     100  0   
##  4 0.1   40000         50      0    99  100   100.    100  0   
##  5 0.3   50000         50      0    99  100   100.    100  0   
##  6 0.3   40000         50      0   100  100   100     100  0   
##  7 0.6   50000         50      0    99  100   100.    100  0   
##  8 0.6   40000         50      0   100  100   100     100  0   
##  9 1.2   50000         50      0   100  100   100     100  0   
## 10 1.2   40000         50      0    99  100   100.    100  0   
## 11 2.5   50000         50      0   100  100   100     100  0   
## 12 2.5   40000         50      0    99  100   100.    100  0   
## 13 5     50000         50      0    99  100    99.9   100  0   
## 14 5     40000         50      0   100  100   100     100  0

Sigma 0.0

## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  filter(slices, Sigma == 0 & Generation == 50000)$uni_str_pos and filter(slices, Sigma == 0 & Generation == 40000)$uni_str_pos
## W = 969.5, p-value = 0.05315
## alternative hypothesis: true location shift is not equal to 0

Sigma 0.1

## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  filter(slices, Sigma == 0.1 & Generation == 50000)$uni_str_pos and filter(slices, Sigma == 0.1 & Generation == 40000)$uni_str_pos
## W = 1300, p-value = 0.1594
## alternative hypothesis: true location shift is not equal to 0

Sigma 0.3

## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  filter(slices, Sigma == 0.3 & Generation == 50000)$uni_str_pos and filter(slices, Sigma == 0.3 & Generation == 40000)$uni_str_pos
## W = 1225, p-value = 0.3271
## alternative hypothesis: true location shift is not equal to 0

Sigma 0.6

## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  filter(slices, Sigma == 0.6 & Generation == 50000)$uni_str_pos and filter(slices, Sigma == 0.6 & Generation == 40000)$uni_str_pos
## W = 1225, p-value = 0.3271
## alternative hypothesis: true location shift is not equal to 0

Sigma 1.2

## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  filter(slices, Sigma == 1.2 & Generation == 50000)$uni_str_pos and filter(slices, Sigma == 1.2 & Generation == 40000)$uni_str_pos
## W = 1275, p-value = 0.3271
## alternative hypothesis: true location shift is not equal to 0

Sigma 2.5

## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  filter(slices, Sigma == 2.5 & Generation == 50000)$uni_str_pos and filter(slices, Sigma == 2.5 & Generation == 40000)$uni_str_pos
## W = 1300, p-value = 0.1594
## alternative hypothesis: true location shift is not equal to 0

Sigma 5.0

## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  filter(slices, Sigma == 5 & Generation == 50000)$uni_str_pos and filter(slices, Sigma == 5 & Generation == 40000)$uni_str_pos
## W = 1175, p-value = 0.08218
## alternative hypothesis: true location shift is not equal to 0

10.4 Multi-path exploration results

Here we present the results for best performances and activation gene coverage found by each nondominated sorting sigma value replicate on the multi-path exploration diagnostic. Best performance found refers to the largest average trait score found in a given population, while activation gene coverage refers to the count of unique activation genes in the population. Note that both values fall between 0 and 100.

10.4.1 Performance

Here we analyze the performances for each parameter replicate on the multi-path exploration diagnostic.

10.4.1.2 Best performance throughout

Here we plot the performance of the best performing solution found throughout 50,000 generations.

10.4.1.2.1 Stats

Summary statistics for the performance of the best performing solution found throughout 50,000 generations.

## # A tibble: 7 x 8
##   Sigma count na_cnt   min median  mean   max   IQR
##   <fct> <int>  <int> <dbl>  <dbl> <dbl> <dbl> <dbl>
## 1 0        50      0  3.20   3.68  3.71  4.42 0.248
## 2 0.1      50      0 17.3   19.9  19.8  22.0  1.39 
## 3 0.3      50      0 16.2   19.9  19.8  22.5  1.59 
## 4 0.6      50      0 16.0   19.7  19.6  22.2  1.69 
## 5 1.2      50      0 17.0   19.9  19.8  21.4  1.33 
## 6 2.5      50      0 17.0   18.9  19.0  21.4  1.27 
## 7 5        50      0 15.7   17.7  17.7  20.1  1.40

Kruskal–Wallis test provides evidence of statistical differences among the best performing solution found throughout 50,000 generations.

## 
##  Kruskal-Wallis rank sum test
## 
## data:  val by Sigma
## Kruskal-Wallis chi-squared = 192.67, df = 6, p-value < 2.2e-16

Results for post-hoc Wilcoxon rank-sum test with a Bonferroni correction on the best performing solution found throughout 50,000 generations.

## 
##  Pairwise comparisons using Wilcoxon rank sum test with continuity correction 
## 
## data:  performance$val and performance$Sigma 
## 
##     0       0.1     0.3     0.6     1.2     2.5    
## 0.1 < 2e-16 -       -       -       -       -      
## 0.3 < 2e-16 1.0000  -       -       -       -      
## 0.6 < 2e-16 1.0000  1.0000  -       -       -      
## 1.2 < 2e-16 1.0000  1.0000  1.0000  -       -      
## 2.5 < 2e-16 0.0194  0.0199  0.1236  0.0058  -      
## 5   < 2e-16 1.3e-11 7.8e-10 2.6e-09 8.8e-12 4.7e-07
## 
## P value adjustment method: bonferroni

10.4.1.3 End of 50,000 generations

Best performance in the population at the end of 50,000 generations.

10.4.1.3.1 Stats

Summary statistics for the best performance in the population at the end of 50,000 generations.

## # A tibble: 7 x 8
##   Sigma count na_cnt   min median  mean   max   IQR
##   <fct> <int>  <int> <dbl>  <dbl> <dbl> <dbl> <dbl>
## 1 0        50      0  3.05   3.57  3.54  4.15 0.275
## 2 0.1      50      0 13.4   17.9  17.9  20.8  1.80 
## 3 0.3      50      0 13.4   18.1  18.0  21.6  1.65 
## 4 0.6      50      0 12.5   17.8  17.6  21.0  1.84 
## 5 1.2      50      0 14.6   18.0  17.8  20.1  1.37 
## 6 2.5      50      0 12.3   16.9  16.7  19.7  2.15 
## 7 5        50      0 11.9   15.4  15.5  18.9  1.91

Kruskal–Wallis test provides evidence of statistical differences among best performance in the population at the end of 50,000 generations.

## 
##  Kruskal-Wallis rank sum test
## 
## data:  pop_fit_max by Sigma
## Kruskal-Wallis chi-squared = 182.39, df = 6, p-value < 2.2e-16

Results for post-hoc Wilcoxon rank-sum test with a Bonferroni correction on the best performance in the population at the end of 50,000 generations.

## 
##  Pairwise comparisons using Wilcoxon rank sum test with continuity correction 
## 
## data:  performance$pop_fit_max and performance$Sigma 
## 
##     0       0.1     0.3     0.6     1.2     2.5    
## 0.1 < 2e-16 -       -       -       -       -      
## 0.3 < 2e-16 1.00000 -       -       -       -      
## 0.6 < 2e-16 1.00000 1.00000 -       -       -      
## 1.2 < 2e-16 1.00000 1.00000 1.00000 -       -      
## 2.5 < 2e-16 0.00221 0.00091 0.12360 0.01237 -      
## 5   < 2e-16 4.1e-09 4.2e-09 8.7e-07 6.9e-09 0.00443
## 
## P value adjustment method: bonferroni

10.4.2 Activation gene coverage

Here we analyze the activation gene coverage for each parameter replicate on the multi-path exploration diagnostic.

10.4.2.2 End of 50,000 generations

Activation gene coverage in the population at the end of 50,000 generations.

10.4.2.2.1 Stats

Summary statistics for the activation gene coverage in the population at the end of 50,000 generations.

## # A tibble: 7 x 8
##   Sigma count na_cnt   min median  mean   max   IQR
##   <fct> <int>  <int> <int>  <dbl> <dbl> <int> <dbl>
## 1 0        50      0    18   28   28.0     34  4   
## 2 0.1      50      0     5    9    9.76    19  2   
## 3 0.3      50      0     6    9    9.76    22  2   
## 4 0.6      50      0     6   10   11.2     22  3   
## 5 1.2      50      0     5   10.5 11.0     22  3   
## 6 2.5      50      0     9   13   13.6     24  4   
## 7 5        50      0     9   17   17.2     24  3.75

Kruskal–Wallis test provides evidence of statistical differences among activation gene coverage in the population at the end of 50,000 generations.

## 
##  Kruskal-Wallis rank sum test
## 
## data:  uni_str_pos by Sigma
## Kruskal-Wallis chi-squared = 218.65, df = 6, p-value < 2.2e-16

Results for post-hoc Wilcoxon rank-sum test with a Bonferroni correction on the activation gene coverage in the population at the end of 50,000 generations.

## 
##  Pairwise comparisons using Wilcoxon rank sum test with continuity correction 
## 
## data:  coverage$uni_str_pos and coverage$Sigma 
## 
##     0       0.1     0.3     0.6     1.2     2.5    
## 0.1 < 2e-16 -       -       -       -       -      
## 0.3 < 2e-16 1.00000 -       -       -       -      
## 0.6 < 2e-16 1.00000 0.65720 -       -       -      
## 1.2 < 2e-16 0.01207 0.01118 1.00000 -       -      
## 2.5 2.3e-16 6.0e-09 1.3e-08 0.00084 0.00019 -      
## 5   8.2e-16 1.7e-12 1.4e-12 4.4e-09 4.3e-12 8.0e-07
## 
## P value adjustment method: bonferroni

10.4.3 Multi-valley crossing

10.4.3.2 Performance comparisons

10.4.3.2.1 Stats

Summary statistics for the performance of the best performance at 40,000 and 50,000 generations.

## `summarise()` has grouped output by 'Sigma'. You can override using the
## `.groups` argument.
## # A tibble: 14 x 9
## # Groups:   Sigma [7]
##    Sigma Generation count na_cnt   min median  mean   max   IQR
##    <fct> <fct>      <int>  <int> <dbl>  <dbl> <dbl> <dbl> <dbl>
##  1 0     50000         50      0  2.58   2.98  3.02  3.67 0.337
##  2 0     40000         50      0  2.22   2.54  2.55  3.01 0.238
##  3 0.1   50000         50      0  1.14   1.82  1.78  2.21 0.274
##  4 0.1   40000         50      0  1.27   1.76  1.72  2.04 0.321
##  5 0.3   50000         50      0  1.09   1.78  1.76  2.27 0.279
##  6 0.3   40000         50      0  1.19   1.68  1.68  2.30 0.363
##  7 0.6   50000         50      0  1.02   1.56  1.57  2.13 0.327
##  8 0.6   40000         50      0  1.03   1.58  1.52  2.10 0.342
##  9 1.2   50000         50      0  1.11   1.50  1.53  2.19 0.235
## 10 1.2   40000         50      0  1.14   1.44  1.49  2.36 0.308
## 11 2.5   50000         50      0  1.26   1.46  1.50  1.95 0.140
## 12 2.5   40000         50      0  1.03   1.38  1.39  1.78 0.222
## 13 5     50000         50      0  1.19   1.40  1.44  2.23 0.244
## 14 5     40000         50      0  1.06   1.29  1.32  1.78 0.234

Sigma 0.0

## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  filter(slices, Sigma == 0 & Generation == 50000)$pop_fit_max and filter(slices, Sigma == 0 & Generation == 40000)$pop_fit_max
## W = 2343, p-value = 5.016e-14
## alternative hypothesis: true location shift is not equal to 0

Sigma 0.1

## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  filter(slices, Sigma == 0.1 & Generation == 50000)$pop_fit_max and filter(slices, Sigma == 0.1 & Generation == 40000)$pop_fit_max
## W = 1465, p-value = 0.1392
## alternative hypothesis: true location shift is not equal to 0

Sigma 0.3

## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  filter(slices, Sigma == 0.3 & Generation == 50000)$pop_fit_max and filter(slices, Sigma == 0.3 & Generation == 40000)$pop_fit_max
## W = 1509, p-value = 0.07474
## alternative hypothesis: true location shift is not equal to 0

Sigma 0.6

## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  filter(slices, Sigma == 0.6 & Generation == 50000)$pop_fit_max and filter(slices, Sigma == 0.6 & Generation == 40000)$pop_fit_max
## W = 1383, p-value = 0.361
## alternative hypothesis: true location shift is not equal to 0

Sigma 1.2

## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  filter(slices, Sigma == 1.2 & Generation == 50000)$pop_fit_max and filter(slices, Sigma == 1.2 & Generation == 40000)$pop_fit_max
## W = 1447, p-value = 0.1755
## alternative hypothesis: true location shift is not equal to 0

Sigma 2.5

## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  filter(slices, Sigma == 2.5 & Generation == 50000)$pop_fit_max and filter(slices, Sigma == 2.5 & Generation == 40000)$pop_fit_max
## W = 1704, p-value = 0.00177
## alternative hypothesis: true location shift is not equal to 0

Sigma 5.0

## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  filter(slices, Sigma == 5 & Generation == 50000)$pop_fit_max and filter(slices, Sigma == 5 & Generation == 40000)$pop_fit_max
## W = 1736, p-value = 0.0008171
## alternative hypothesis: true location shift is not equal to 0

10.4.3.4 Activation gene coverage comparison

Best performances in the population at 40,000 and 50,000 generations.

10.4.3.4.1 Stats

Summary statistics for the performance of the best performance at 40,000 and 50,000 generations.

## `summarise()` has grouped output by 'Sigma'. You can override using the
## `.groups` argument.
## # A tibble: 14 x 9
## # Groups:   Sigma [7]
##    Sigma Generation count na_cnt   min median  mean   max   IQR
##    <fct> <fct>      <int>  <int> <int>  <dbl> <dbl> <int> <dbl>
##  1 0     50000         50      0    26   34.5  35.1    49  6.75
##  2 0     40000         50      0    29   41.5  41.3    54  5.75
##  3 0.1   50000         50      0     7   21    34.6    80 44.8 
##  4 0.1   40000         50      0    10   36.5  39.1    78 39.8 
##  5 0.3   50000         50      0    10   39    40.4    82 38.5 
##  6 0.3   40000         50      0    11   53.5  47.5    82 44   
##  7 0.6   50000         50      0    26   64    62.6    85 21.5 
##  8 0.6   40000         50      0    19   67    65.3    82 13.5 
##  9 1.2   50000         50      0    30   73    70.7    85  9   
## 10 1.2   40000         50      0    32   76    73.9    86  7.75
## 11 2.5   50000         50      0    63   82.5  80.9    88  5.75
## 12 2.5   40000         50      0    71   84    82.6    92  4.75
## 13 5     50000         50      0    75   84    85      95  6.75
## 14 5     40000         50      0    76   87.5  86.1    96  8.75

Sigma 0.0

## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  filter(slices, Sigma == 0 & Generation == 50000)$uni_str_pos and filter(slices, Sigma == 0 & Generation == 40000)$uni_str_pos
## W = 452.5, p-value = 3.703e-08
## alternative hypothesis: true location shift is not equal to 0

Sigma 0.1

## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  filter(slices, Sigma == 0.1 & Generation == 50000)$uni_str_pos and filter(slices, Sigma == 0.1 & Generation == 40000)$uni_str_pos
## W = 1060.5, p-value = 0.1924
## alternative hypothesis: true location shift is not equal to 0

Sigma 0.3

## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  filter(slices, Sigma == 0.3 & Generation == 50000)$uni_str_pos and filter(slices, Sigma == 0.3 & Generation == 40000)$uni_str_pos
## W = 1008, p-value = 0.09584
## alternative hypothesis: true location shift is not equal to 0

Sigma 0.6

## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  filter(slices, Sigma == 0.6 & Generation == 50000)$uni_str_pos and filter(slices, Sigma == 0.6 & Generation == 40000)$uni_str_pos
## W = 1101, p-value = 0.3057
## alternative hypothesis: true location shift is not equal to 0

Sigma 1.2

## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  filter(slices, Sigma == 1.2 & Generation == 50000)$uni_str_pos and filter(slices, Sigma == 1.2 & Generation == 40000)$uni_str_pos
## W = 910, p-value = 0.01909
## alternative hypothesis: true location shift is not equal to 0

Sigma 2.5

## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  filter(slices, Sigma == 2.5 & Generation == 50000)$uni_str_pos and filter(slices, Sigma == 2.5 & Generation == 40000)$uni_str_pos
## W = 998.5, p-value = 0.0823
## alternative hypothesis: true location shift is not equal to 0

Sigma 5.0

## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  filter(slices, Sigma == 5 & Generation == 50000)$uni_str_pos and filter(slices, Sigma == 5 & Generation == 40000)$uni_str_pos
## W = 1096.5, p-value = 0.2906
## alternative hypothesis: true location shift is not equal to 0