Chapter 5 Multi-path mpeloration results

Here we present the results for the best performances and activation gene coverage generated by each selection scheme replicate on the multi-path mpeloration diagnostic. Best performance found refers to the largest average trait score found in a given population. Note that activation gene coverage values are gathered at the population-level. Activation gene coverage refers to the count of unique activation genes in a given population; this gives us a range of integers between 0 and 100.

5.2 Performance

Performance analysis.

5.2.1 Over time

Best performance in a population over time.

## `summarise()` has grouped output by 'Selection Scheme'. You can override using
## the `.groups` argument.

5.2.2 Best performance throughout

Best performance throughout 50,000 generations.

5.2.2.1 Stats

Summary statistics for the best performance.

## # A tibble: 8 x 8
##   acron count na_cnt    min median  mean    max    IQR
##   <fct> <int>  <int>  <dbl>  <dbl> <dbl>  <dbl>  <dbl>
## 1 lex      50      0 83.4    93.2  92.5   97.7   4.05 
## 2 tor      50      0  6.00   42.5  45.2   97.9  53.2  
## 3 tru      50      0  5      44.0  46.1  100.   49.7  
## 4 nds      50      0 16.2    19.9  19.8   22.5   1.59 
## 5 gfs      50      0  4.99   20.4  17.6   22.2   6.69 
## 6 pfs      50      0  6.76   13.5  13.4   15.6   1.10 
## 7 nov      50      0  2.62    3.89  4.01   5.68  0.860
## 8 ran      50      0  0.870   1.25  1.28   2.04  0.288

Kruskal–Wallis test provides evidence of difference among best performances.

## 
##  Kruskal-Wallis rank sum test
## 
## data:  val by acron
## Kruskal-Wallis chi-squared = 329.88, df = 7, p-value < 2.2e-16

Results for post-hoc Wilcoxon rank-sum test with a Bonferroni correction on best performance.

## 
##  Pairwise comparisons using Wilcoxon rank sum test with continuity correction 
## 
## data:  performance$val and performance$acron 
## 
##     lex     tor     tru     nds     gfs     pfs     nov    
## tor 3.0e-13 -       -       -       -       -       -      
## tru 1.1e-11 1.00000 -       -       -       -       -      
## nds < 2e-16 0.00047 0.00027 -       -       -       -      
## gfs < 2e-16 2.3e-05 1.6e-05 1.00000 -       -       -      
## pfs < 2e-16 3.1e-08 6.9e-10 < 2e-16 0.00015 -       -      
## nov < 2e-16 < 2e-16 < 2e-16 < 2e-16 < 2e-16 < 2e-16 -      
## ran < 2e-16 < 2e-16 < 2e-16 < 2e-16 < 2e-16 < 2e-16 < 2e-16
## 
## P value adjustment method: bonferroni

5.2.3 End of 50,000 generations

Best performance in the population at the end of 50,000 generations.

5.2.3.1 Stats

Summary statistics for best performance in the final population.

## # A tibble: 8 x 8
##   acron count na_cnt    min median   mean    max    IQR
##   <fct> <int>  <int>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl>
## 1 lex      50      0 80.7   91.3   90.2    97.1   5.91 
## 2 tor      50      0  6.00  42.5   45.2    97.9  53.2  
## 3 tru      50      0  5     44.0   46.1   100.   49.7  
## 4 nds      50      0 13.4   18.1   18.0    21.6   1.65 
## 5 gfs      50      0  4.96  20.4   17.6    22.2   6.68 
## 6 pfs      50      0  6.67  13.5   13.3    15.6   1.04 
## 7 nov      50      0  2.16   3.66   3.64    5.12  0.859
## 8 ran      50      0  0.553  0.785  0.840   1.56  0.299

Kruskal–Wallis test provides evidence of difference among best performance in the final population.

## 
##  Kruskal-Wallis rank sum test
## 
## data:  pop_fit_max by acron
## Kruskal-Wallis chi-squared = 330.05, df = 7, p-value < 2.2e-16

Results for post-hoc Wilcoxon rank-sum test with a Bonferroni correction on best performance in the final population.

## 
##  Pairwise comparisons using Wilcoxon rank sum test with continuity correction 
## 
## data:  performance$pop_fit_max and performance$acron 
## 
##     lex     tor     tru     nds     gfs     pfs     nov    
## tor 3.9e-12 -       -       -       -       -       -      
## tru 7.1e-11 1.00000 -       -       -       -       -      
## nds < 2e-16 8.2e-05 9.3e-07 -       -       -       -      
## gfs < 2e-16 2.2e-05 1.6e-05 1.00000 -       -       -      
## pfs < 2e-16 3.0e-08 6.6e-10 3.0e-15 0.00015 -       -      
## nov < 2e-16 < 2e-16 < 2e-16 < 2e-16 < 2e-16 < 2e-16 -      
## ran < 2e-16 < 2e-16 < 2e-16 < 2e-16 < 2e-16 < 2e-16 < 2e-16
## 
## P value adjustment method: bonferroni

5.3 Activation gene coverage

Activation gene coverage analysis.

5.3.2 End of 50,000 generations

Activation gene coverage in the population at the end of 50,000 generations.

5.3.2.1 Stats

Summary statistics for activation gene coverage in the final population.

## # A tibble: 8 x 8
##   acron count na_cnt   min median  mean   max   IQR
##   <fct> <int>  <int> <int>  <dbl> <dbl> <int> <dbl>
## 1 nov      50      0    68   85.5 84.9     95  6   
## 2 lex      50      0    22   31   30.8     36  3.75
## 3 nds      50      0     6    9    9.76    22  2   
## 4 gfs      50      0     2    3    3.24     5  1   
## 5 pfs      50      0     2    2    2.46     3  1   
## 6 tor      50      0     1    2    1.98     2  0   
## 7 tru      50      0     2    2    2.02     3  0   
## 8 ran      50      0     1    1.5  1.86     5  1

Kruskal–Wallis test provides evidence of difference among activation gene coverage in the final population.

## 
##  Kruskal-Wallis rank sum test
## 
## data:  uni_str_pos by acron
## Kruskal-Wallis chi-squared = 351.29, df = 7, p-value < 2.2e-16

Results for post-hoc Wilcoxon rank-sum test with a Bonferroni correction on activation gene coverage in the final population.

## 
##  Pairwise comparisons using Wilcoxon rank sum test with continuity correction 
## 
## data:  coverage$uni_str_pos and coverage$acron 
## 
##     nov     lex     nds     gfs     pfs     tor     tru    
## lex < 2e-16 -       -       -       -       -       -      
## nds < 2e-16 < 2e-16 -       -       -       -       -      
## gfs < 2e-16 < 2e-16 < 2e-16 -       -       -       -      
## pfs < 2e-16 < 2e-16 < 2e-16 7.8e-07 -       -       -      
## tor < 2e-16 < 2e-16 < 2e-16 4.2e-16 6.3e-07 -       -      
## tru < 2e-16 < 2e-16 < 2e-16 1.4e-15 4.3e-06 1.00000 -      
## ran < 2e-16 < 2e-16 < 2e-16 1.1e-08 0.00073 0.20446 0.10598
## 
## P value adjustment method: bonferroni

5.4 Multi-valley crossing results

5.4.1 Performance

Performance analysis.

5.4.1.1 Performance over time

Best performance in a population over time.

## `summarise()` has grouped output by 'Selection Scheme'. You can override using
## the `.groups` argument.

5.4.1.2 Best performance throughout

Best performance found throughout 50,000 generations.

5.4.1.2.1 Stats

Summary statistics for the performance of the best performance.

## # A tibble: 8 x 8
##   acron count na_cnt   min median  mean   max   IQR
##   <fct> <int>  <int> <dbl>  <dbl> <dbl> <dbl> <dbl>
## 1 gfs      50      0 7.56   11.6  11.5  13.2  0.865
## 2 pfs      50      0 7.12   11.0  10.8  12.3  1.06 
## 3 tor      50      0 1.08    4.19  4.50  8.53 2.91 
## 4 tru      50      0 1.52    4.83  4.96  8.43 3.76 
## 5 nov      50      0 3.13    3.80  3.88  4.79 0.617
## 6 lex      50      0 2.71    3.39  3.48  4.98 0.555
## 7 nds      50      0 1.54    1.99  1.98  2.63 0.307
## 8 ran      50      0 0.825   1.07  1.10  1.85 0.222

Kruskal–Wallis test provides evidence of statistical differences.

## 
##  Kruskal-Wallis rank sum test
## 
## data:  val by acron
## Kruskal-Wallis chi-squared = 335.6, df = 7, p-value < 2.2e-16

Results for post-hoc Wilcoxon rank-sum test with a Bonferroni correction.

## 
##  Pairwise comparisons using Wilcoxon rank sum test with continuity correction 
## 
## data:  performance$val and performance$acron 
## 
##     gfs     pfs     tor     tru     nov     lex     nds    
## pfs 0.00212 -       -       -       -       -       -      
## tor < 2e-16 < 2e-16 -       -       -       -       -      
## tru < 2e-16 2.9e-16 1.00000 -       -       -       -      
## nov < 2e-16 < 2e-16 1.00000 0.18480 -       -       -      
## lex < 2e-16 < 2e-16 0.08240 0.02364 0.00014 -       -      
## nds < 2e-16 < 2e-16 2.5e-09 1.7e-12 < 2e-16 < 2e-16 -      
## ran < 2e-16 < 2e-16 5.2e-16 < 2e-16 < 2e-16 < 2e-16 2.6e-16
## 
## P value adjustment method: bonferroni

5.4.1.3 Performance comparison

Best performances in the population at 40,000 and 50,000 generations.

## Warning: The following aesthetics were dropped during statistical transformation:
## colour, shape
## i This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## i Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation:
## colour, shape
## i This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## i Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?

5.4.1.3.1 Stats

Summary statistics for the performance of the best performance at 40,000 and 50,000 generations.

## `summarise()` has grouped output by 'acron'. You can override using the
## `.groups` argument.
## # A tibble: 14 x 9
## # Groups:   acron [7]
##    acron Generation count na_cnt   min median  mean   max   IQR
##    <fct> <fct>      <int>  <int> <dbl>  <dbl> <dbl> <dbl> <dbl>
##  1 gfs   50000         50      0  7.43  11.6  11.4  13.2  0.865
##  2 gfs   40000         50      0  6.76   9.34  9.32 10.6  0.772
##  3 pfs   50000         50      0  6.96  10.8  10.7  12.1  1.06 
##  4 pfs   40000         50      0  6.57   9.06  9.01 10.2  0.832
##  5 tru   50000         50      0  1.52   4.83  4.96  8.43 3.76 
##  6 tru   40000         50      0  1.52   4.83  4.85  8.42 4.12 
##  7 tor   50000         50      0  1.08   4.19  4.50  8.53 2.91 
##  8 tor   40000         50      0  1.08   4.07  4.31  8.51 3.11 
##  9 nov   50000         50      0  2.73   3.40  3.49  4.51 0.582
## 10 nov   40000         50      0  2.42   3.11  3.10  3.87 0.538
## 11 nds   50000         50      0  1.09   1.78  1.76  2.27 0.279
## 12 nds   40000         50      0  1.19   1.68  1.68  2.30 0.363
## 13 lex   50000         50      0  1.16   2.29  2.30  4.98 0.974
## 14 lex   40000         50      0  1.11   2.16  2.25  4.67 0.681

Truncation selection comparisons.

## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  filter(slices, acron == "tru" & Generation == 50000)$pop_fit_max and filter(slices, acron == "tru" & Generation == 40000)$pop_fit_max
## W = 1317, p-value = 0.6466
## alternative hypothesis: true location shift is not equal to 0

Tournament selection comparisons.

## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  filter(slices, acron == "tor" & Generation == 50000)$pop_fit_max and filter(slices, acron == "tor" & Generation == 40000)$pop_fit_max
## W = 1339, p-value = 0.5418
## alternative hypothesis: true location shift is not equal to 0

Lexicase selection comparisons.

## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  filter(slices, acron == "lex" & Generation == 50000)$pop_fit_max and filter(slices, acron == "lex" & Generation == 40000)$pop_fit_max
## W = 1286, p-value = 0.8067
## alternative hypothesis: true location shift is not equal to 0

Genotypic fitness sharing comparisons.

## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  filter(slices, acron == "gfs" & Generation == 50000)$pop_fit_max and filter(slices, acron == "gfs" & Generation == 40000)$pop_fit_max
## W = 2327, p-value = 1.161e-13
## alternative hypothesis: true location shift is not equal to 0

Phenotypic fitness sharing comparisons.

## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  filter(slices, acron == "pfs" & Generation == 50000)$pop_fit_max and filter(slices, acron == "pfs" & Generation == 40000)$pop_fit_max
## W = 2358, p-value = 2.26e-14
## alternative hypothesis: true location shift is not equal to 0

Nondominated sorting comparisons.

## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  filter(slices, acron == "nds" & Generation == 50000)$pop_fit_max and filter(slices, acron == "nds" & Generation == 40000)$pop_fit_max
## W = 1509, p-value = 0.07474
## alternative hypothesis: true location shift is not equal to 0

Novelty search comparisons.

## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  filter(slices, acron == "nov" & Generation == 50000)$pop_fit_max and filter(slices, acron == "nov" & Generation == 40000)$pop_fit_max
## W = 1872, p-value = 1.831e-05
## alternative hypothesis: true location shift is not equal to 0

5.4.2 Activation gene coverage

Activation gene coverage analysis.

5.4.2.2 Coverage comparison

Best activation gene coverage in the population at 40,000 and 50,000 generations.

5.4.2.3 Stats

Summary statistics for the activation gene coverage at 40,000 and 50,000 generations.

## `summarise()` has grouped output by 'acron'. You can override using the
## `.groups` argument.
## # A tibble: 14 x 9
## # Groups:   acron [7]
##    acron Generation count na_cnt   min median  mean   max   IQR
##    <fct> <fct>      <int>  <int> <int>  <dbl> <dbl> <int> <dbl>
##  1 nov   50000         50      0    70   78   79.1     96  8.75
##  2 nov   40000         50      0    66   77.5 78.6     96  8.75
##  3 lex   50000         50      0    54   67   66.6     76  6   
##  4 lex   40000         50      0    52   69   68.3     79  6.75
##  5 nds   50000         50      0    10   39   40.4     82 38.5 
##  6 nds   40000         50      0    11   53.5 47.5     82 44   
##  7 tru   50000         50      0     1    4    4.8     12  3.75
##  8 tru   40000         50      0     2    4    4.78    13  4   
##  9 tor   50000         50      0     2    5    5.1     16  3   
## 10 tor   40000         50      0     1    4.5  4.38    11  3   
## 11 gfs   50000         50      0     2    3    3.14     5  1   
## 12 gfs   40000         50      0     1    3    2.72     4  1   
## 13 pfs   50000         50      0     2    4    4.34     6  1   
## 14 pfs   40000         50      0     2    3    3.28     6  1

Truncation selection comparisons.

## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  filter(slices, acron == "tru" & Generation == 50000)$uni_str_pos and filter(slices, acron == "tru" & Generation == 40000)$uni_str_pos
## W = 1254.5, p-value = 0.9778
## alternative hypothesis: true location shift is not equal to 0

Tournament selection comparisons.

## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  filter(slices, acron == "tor" & Generation == 50000)$uni_str_pos and filter(slices, acron == "tor" & Generation == 40000)$uni_str_pos
## W = 1396, p-value = 0.3094
## alternative hypothesis: true location shift is not equal to 0

Lexicase selection comparisons.

## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  filter(slices, acron == "lex" & Generation == 50000)$uni_str_pos and filter(slices, acron == "lex" & Generation == 40000)$uni_str_pos
## W = 992.5, p-value = 0.07568
## alternative hypothesis: true location shift is not equal to 0

Genotypic fitness sharing comparisons.

## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  filter(slices, acron == "gfs" & Generation == 50000)$uni_str_pos and filter(slices, acron == "gfs" & Generation == 40000)$uni_str_pos
## W = 1573, p-value = 0.01769
## alternative hypothesis: true location shift is not equal to 0

Phenotypic fitness sharing comparisons.

## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  filter(slices, acron == "pfs" & Generation == 50000)$uni_str_pos and filter(slices, acron == "pfs" & Generation == 40000)$uni_str_pos
## W = 1914.5, p-value = 2.023e-06
## alternative hypothesis: true location shift is not equal to 0

Nondominated sorting comparisons.

## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  filter(slices, acron == "nds" & Generation == 50000)$uni_str_pos and filter(slices, acron == "nds" & Generation == 40000)$uni_str_pos
## W = 1008, p-value = 0.09584
## alternative hypothesis: true location shift is not equal to 0

Novelty search comparisons.

## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  filter(slices, acron == "nov" & Generation == 50000)$uni_str_pos and filter(slices, acron == "nov" & Generation == 40000)$uni_str_pos
## W = 1295.5, p-value = 0.756
## alternative hypothesis: true location shift is not equal to 0