Chapter 2 Truncation selection

Results for the truncation selection parameter sweep on the diagnostics with no valleys.

2.2 Exploitation rate results

Here we present the results for best performances found by each selection scheme parameter on the exploitation rate diagnostic. 50 replicates are conducted for each scheme explored.

2.2.1 Performance over time

Best performance in a population over time. Data points on the graph is the average performance across 50 replicates every 2000 generations. Shading comes from the best and worse performance across 50 replicates.

## `summarise()` has grouped output by 'T'. You can override using the `.groups`
## argument.

2.2.2 Generation satisfactory solution found

First generation a satisfactory solution is found throughout the 50,000 generations.

2.2.2.1 Stats

Summary statistics for the generation a satisfactory solution is found.

## # A tibble: 9 x 8
##   T     count na_cnt   min median   mean   max   IQR
##   <fct> <int>  <int> <int>  <dbl>  <dbl> <int> <dbl>
## 1 1        50      0  2734  2765   2766.  2795  17.8
## 2 2        50      0  2889  2914.  2914.  2952  18.5
## 3 4        50      0  3093  3124.  3127.  3167  24  
## 4 8        50      0  3385  3426.  3425.  3473  21.2
## 5 16       50      0  3786  3836   3835.  3869  34  
## 6 32       50      0  4361  4402.  4400.  4450  26.5
## 7 64       50      0  5201  5264   5266.  5337  44.5
## 8 128      50      0  6667  6766.  6772.  6905  64.2
## 9 256      50      0 10236 10387  10382. 10538  86.8

Kruskal–Wallis test illustrates evidence of statistical differences.

## 
##  Kruskal-Wallis rank sum test
## 
## data:  gen by T
## Kruskal-Wallis chi-squared = 443.46, df = 8, p-value < 2.2e-16

Results for post-hoc Wilcoxon rank-sum test with a Bonferroni correction.

## 
##  Pairwise comparisons using Wilcoxon rank sum test with continuity correction 
## 
## data:  ssf$gen and ssf$T 
## 
##     1      2      4      8      16     32     64     128   
## 2   <2e-16 -      -      -      -      -      -      -     
## 4   <2e-16 <2e-16 -      -      -      -      -      -     
## 8   <2e-16 <2e-16 <2e-16 -      -      -      -      -     
## 16  <2e-16 <2e-16 <2e-16 <2e-16 -      -      -      -     
## 32  <2e-16 <2e-16 <2e-16 <2e-16 <2e-16 -      -      -     
## 64  <2e-16 <2e-16 <2e-16 <2e-16 <2e-16 <2e-16 -      -     
## 128 <2e-16 <2e-16 <2e-16 <2e-16 <2e-16 <2e-16 <2e-16 -     
## 256 <2e-16 <2e-16 <2e-16 <2e-16 <2e-16 <2e-16 <2e-16 <2e-16
## 
## P value adjustment method: bonferroni

2.3 Ordered exploitation results

Here we present the results for best performances found by each selection scheme parameter on the exploitation rate diagnostic. 50 replicates are conducted for each scheme explored.

2.3.1 Performance over time

Best performance in a population over time. Data points on the graph is the average performance across 50 replicates every 2000 generations. Shading comes from the best and worse performance across 50 replicates.

## `summarise()` has grouped output by 'T'. You can override using the `.groups`
## argument.

2.3.2 Generation satisfactory solution found

First generation a satisfactory solution is found throughout the 50,000 generations.

2.3.2.1 Stats

Summary statistics for the generation a satisfactory solution is found.

## # A tibble: 8 x 8
##   T     count na_cnt   min median   mean   max   IQR
##   <fct> <int>  <int> <int>  <dbl>  <dbl> <int> <dbl>
## 1 1        50      0 10494 11246. 11226. 12014  316 
## 2 2        50      0 11332 12438  12389. 12862  320.
## 3 4        50      0 13379 13941  13950. 14630  529.
## 4 8        50      0 14261 15563  15567. 16591  476.
## 5 16       50      0 16147 17385  17307. 18144  620.
## 6 32       50      0 19612 20528. 20543. 21845  715 
## 7 64       50      0 24048 25548. 25513. 26807 1075 
## 8 128      50      0 36034 37956  37965. 39783 1251.

Kruskal–Wallis test illustrates evidence of statistical differences.

## 
##  Kruskal-Wallis rank sum test
## 
## data:  gen by T
## Kruskal-Wallis chi-squared = 392.52, df = 7, p-value < 2.2e-16

Results for post-hoc Wilcoxon rank-sum test with a Bonferroni correction.

## 
##  Pairwise comparisons using Wilcoxon rank sum test with continuity correction 
## 
## data:  ssf$gen and ssf$T 
## 
##     1       2       4       8       16      32      64     
## 2   3.1e-16 -       -       -       -       -       -      
## 4   < 2e-16 < 2e-16 -       -       -       -       -      
## 8   < 2e-16 < 2e-16 < 2e-16 -       -       -       -      
## 16  < 2e-16 < 2e-16 < 2e-16 < 2e-16 -       -       -      
## 32  < 2e-16 < 2e-16 < 2e-16 < 2e-16 < 2e-16 -       -      
## 64  < 2e-16 < 2e-16 < 2e-16 < 2e-16 < 2e-16 < 2e-16 -      
## 128 < 2e-16 < 2e-16 < 2e-16 < 2e-16 < 2e-16 < 2e-16 < 2e-16
## 
## P value adjustment method: bonferroni

2.4 Contradictory objectives results

Here we present the results for activation gene coverage and satisfactory trait coverage found by each selection scheme parameter on the contradictory objectives diagnostic. 50 replicates are conducted for each scheme parameters explored.

2.4.1 Activation gene coverage over time

Activation gene coverage in a population over time. Data points on the graph is the average activation gene coverage across 50 replicates every 2000 generations. Shading comes from the best and worse coverage across 50 replicates.

## `summarise()` has grouped output by 'T'. You can override using the `.groups`
## argument.

2.4.2 Final activation gene coverage

Activation gene coverage found in the final population at 50,000 generations.

2.4.2.1 Stats

Summary statistics for the generation a satisfactory solution is found.

## # A tibble: 9 x 8
##   T     count na_cnt   min median  mean   max   IQR
##   <fct> <int>  <int> <int>  <dbl> <dbl> <int> <dbl>
## 1 1        50      0     1      1     1     1     0
## 2 2        50      0     1      1     1     1     0
## 3 4        50      0     1      1     1     1     0
## 4 8        50      0     1      1     1     1     0
## 5 16       50      0     1      1     1     1     0
## 6 32       50      0     1      1     1     1     0
## 7 64       50      0     1      1     1     1     0
## 8 128      50      0     1      1     1     1     0
## 9 256      50      0     1      1     1     1     0

2.4.4 Final satisfactory trait coverage

Satisfactory trait coverage found in the final population at 50,000 generations.

2.4.4.1 Stats

Summary statistics for the generation a satisfactory solution is found.

## # A tibble: 9 x 8
##   T     count na_cnt   min median  mean   max   IQR
##   <fct> <int>  <int> <int>  <dbl> <dbl> <int> <dbl>
## 1 1        50      0     1      1     1     1     0
## 2 2        50      0     1      1     1     1     0
## 3 4        50      0     1      1     1     1     0
## 4 8        50      0     1      1     1     1     0
## 5 16       50      0     1      1     1     1     0
## 6 32       50      0     1      1     1     1     0
## 7 64       50      0     1      1     1     1     0
## 8 128      50      0     1      1     1     1     0
## 9 256      50      0     1      1     1     1     0

2.5 Multi-path exploration results

Here we present the results for best performances and activation gene coverage found by each selection scheme parameter on the multi-path exploration diagnostic. 50 replicates are conducted for each scheme parameter explored.

2.5.1 Activation gene coverage over time

Activation gene coverage in a population over time. Data points on the graph is the average activation gene coverage across 50 replicates every 2000 generations. Shading comes from the best and worse coverage across 50 replicates.

## `summarise()` has grouped output by 'T'. You can override using the `.groups`
## argument.

2.5.2 Final activation gene coverage

Activation gene coverage found in the final population at 50,000 generations.

2.5.2.1 Stats

Summary statistics for the generation a satisfactory solution is found.

## # A tibble: 9 x 8
##   T     count na_cnt   min median  mean   max   IQR
##   <fct> <int>  <int> <int>  <dbl> <dbl> <int> <dbl>
## 1 1        50      0     1      2  2        3     0
## 2 2        50      0     2      2  2        2     0
## 3 4        50      0     1      2  1.96     2     0
## 4 8        50      0     1      2  2        3     0
## 5 16       50      0     1      2  2        3     0
## 6 32       50      0     1      2  1.98     2     0
## 7 64       50      0     1      2  2        3     0
## 8 128      50      0     2      2  2.02     3     0
## 9 256      50      0     2      2  2.36     6     0

Kruskal–Wallis test illustrates evidence of statistical differences.

## 
##  Kruskal-Wallis rank sum test
## 
## data:  uni_str_pos by T
## Kruskal-Wallis chi-squared = 32.719, df = 8, p-value = 6.92e-05

Results for post-hoc Wilcoxon rank-sum test with a Bonferroni correction.

## 
##  Pairwise comparisons using Wilcoxon rank sum test with continuity correction 
## 
## data:  act_coverage$uni_str_pos and act_coverage$T 
## 
##     1     2     4     8     16    32    64    128  
## 2   1.000 -     -     -     -     -     -     -    
## 4   1.000 1.000 -     -     -     -     -     -    
## 8   1.000 1.000 1.000 -     -     -     -     -    
## 16  1.000 1.000 1.000 1.000 -     -     -     -    
## 32  1.000 1.000 1.000 1.000 1.000 -     -     -    
## 64  1.000 1.000 1.000 1.000 1.000 1.000 -     -    
## 128 1.000 1.000 1.000 1.000 1.000 1.000 1.000 -    
## 256 0.092 0.034 0.015 0.187 0.092 0.022 0.320 0.142
## 
## P value adjustment method: bonferroni

2.5.3 Performance over time

Best performance in a population over time. Data points on the graph is the average performance across 50 replicates every 2000 generations. Shading comes from the best and worse performance across 50 replicates.

## `summarise()` has grouped output by 'T'. You can override using the `.groups`
## argument.

2.5.4 Best performance throughout

Best performance reached throughout 50,000 generations in a population.

2.5.4.1 Stats

Summary statistics for the best performance.

## # A tibble: 9 x 8
##   T     count na_cnt   min median  mean   max   IQR
##   <fct> <int>  <int> <dbl>  <dbl> <dbl> <dbl> <dbl>
## 1 1        50      0 11      60.0  56.6  99.0  40.0
## 2 2        50      0  4      49.0  51.6 100.   56.7
## 3 4        50      0  8.00   57.0  53.9 100.   47.5
## 4 8        50      0  6      53.0  48.9  98.0  50.0
## 5 16       50      0  6      48.5  52.7 100.   54.0
## 6 32       50      0  6      49.0  53.3  98.0  52.5
## 7 64       50      0  3      57.0  55.8  99.9  66.7
## 8 128      50      0  2      42.5  41.7  94.9  39.2
## 9 256      50      0  5      48.0  51.6  95.5  49.3

Kruskal–Wallis test illustrates evidence of no statistical differences.

## 
##  Kruskal-Wallis rank sum test
## 
## data:  val by T
## Kruskal-Wallis chi-squared = 9.7113, df = 8, p-value = 0.2859