Chapter 3 Tournament selection

Results for the tournament selection parameter sweep on the diagnostics with no valleys.

3.2 Exploitation rate results

Here we present the results for best performances found by each selection scheme parameter on the exploitation rate diagnostic. 50 replicates are conducted for each scheme explored.

3.2.1 Performance over time

Best performance in a population over time. Data points on the graph is the average performance across 50 replicates every 2000 generations. Shading comes from the best and worse performance across 50 replicates.

## `summarise()` has grouped output by 'T'. You can override using the `.groups`
## argument.

3.2.2 Generation satisfactory solution found

First generation a satisfactory solution is found throughout the 50,000 generations.

3.2.2.1 Stats

Summary statistics for the generation a satisfactory solution is found.

## # A tibble: 9 x 8
##   T     count na_cnt   min median   mean   max   IQR
##   <fct> <int>  <int> <int>  <dbl>  <dbl> <int> <dbl>
## 1 2        50      0 10756 10958. 10960. 11232 140  
## 2 4        50      0  6959  7040   7049.  7141  66  
## 3 8        50      0  5387  5442   5449.  5518  45.5
## 4 16       50      0  4455  4528   4532.  4592  32.5
## 5 32       50      0  3888  3930.  3929.  3974  30.8
## 6 64       50      0  3468  3509   3510.  3545  23  
## 7 128      50      0  3156  3189   3191.  3234  22.5
## 8 256      50      0  2908  2949   2948.  2985  19.5
## 9 512      50      0  2718  2764.  2766.  2801  16.8

Kruskal–Wallis test illustrates evidence of statistical differences.

## 
##  Kruskal-Wallis rank sum test
## 
## data:  gen by T
## Kruskal-Wallis chi-squared = 443.46, df = 8, p-value < 2.2e-16

Results for post-hoc Wilcoxon rank-sum test with a Bonferroni correction.

## 
##  Pairwise comparisons using Wilcoxon rank sum test with continuity correction 
## 
## data:  ssf$gen and ssf$T 
## 
##     2      4      8      16     32     64     128    256   
## 4   <2e-16 -      -      -      -      -      -      -     
## 8   <2e-16 <2e-16 -      -      -      -      -      -     
## 16  <2e-16 <2e-16 <2e-16 -      -      -      -      -     
## 32  <2e-16 <2e-16 <2e-16 <2e-16 -      -      -      -     
## 64  <2e-16 <2e-16 <2e-16 <2e-16 <2e-16 -      -      -     
## 128 <2e-16 <2e-16 <2e-16 <2e-16 <2e-16 <2e-16 -      -     
## 256 <2e-16 <2e-16 <2e-16 <2e-16 <2e-16 <2e-16 <2e-16 -     
## 512 <2e-16 <2e-16 <2e-16 <2e-16 <2e-16 <2e-16 <2e-16 <2e-16
## 
## P value adjustment method: bonferroni

3.3 Ordered exploitation results

Here we present the results for best performances found by each selection scheme parameter on the exploitation rate diagnostic. 50 replicates are conducted for each scheme explored.

3.3.1 Performance over time

Best performance in a population over time. Data points on the graph is the average performance across 50 replicates every 2000 generations. Shading comes from the best and worse performance across 50 replicates.

## `summarise()` has grouped output by 'T'. You can override using the `.groups`
## argument.

3.3.2 Generation satisfactory solution found

First generation a satisfactory solution is found throughout the 50,000 generations.

3.3.2.1 Stats

Summary statistics for the generation a satisfactory solution is found.

## # A tibble: 8 x 8
##   T     count na_cnt   min median   mean   max   IQR
##   <fct> <int>  <int> <int>  <dbl>  <dbl> <int> <dbl>
## 1 4        50      0 39102 42086  41858. 44378 1207.
## 2 8        50      0 25443 27089  27014. 28293  995.
## 3 16       50      0 20292 21306. 21277. 22188  786.
## 4 32       50      0 16868 18107  18085. 19256  786 
## 5 64       50      0 15114 15949  15885. 16540  488 
## 6 128      50      0 13487 14228. 14238. 14789  495 
## 7 256      50      0 11756 12532. 12520. 13078  412.
## 8 512      50      0 10311 11221  11209. 11823  366.

Kruskal–Wallis test illustrates evidence of statistical differences.

## 
##  Kruskal-Wallis rank sum test
## 
## data:  gen by T
## Kruskal-Wallis chi-squared = 392.76, df = 7, p-value < 2.2e-16

Results for post-hoc Wilcoxon rank-sum test with a Bonferroni correction.

## 
##  Pairwise comparisons using Wilcoxon rank sum test with continuity correction 
## 
## data:  ssf$gen and ssf$T 
## 
##     4      8      16     32     64     128    256   
## 8   <2e-16 -      -      -      -      -      -     
## 16  <2e-16 <2e-16 -      -      -      -      -     
## 32  <2e-16 <2e-16 <2e-16 -      -      -      -     
## 64  <2e-16 <2e-16 <2e-16 <2e-16 -      -      -     
## 128 <2e-16 <2e-16 <2e-16 <2e-16 <2e-16 -      -     
## 256 <2e-16 <2e-16 <2e-16 <2e-16 <2e-16 <2e-16 -     
## 512 <2e-16 <2e-16 <2e-16 <2e-16 <2e-16 <2e-16 <2e-16
## 
## P value adjustment method: bonferroni

3.4 Contradictory objectives results

Here we present the results for activation gene coverage and satisfactory trait coverage found by each selection scheme parameter on the contradictory objectives diagnostic. 50 replicates are conducted for each scheme parameters explored.

3.4.1 Activation gene coverage over time

Activation gene coverage in a population over time. Data points on the graph is the average activation gene coverage across 50 replicates every 2000 generations. Shading comes from the best and worse coverage across 50 replicates.

## `summarise()` has grouped output by 'T'. You can override using the `.groups`
## argument.

3.4.2 Final activation gene coverage

Activation gene coverage found in the final population at 50,000 generations.

3.4.2.1 Stats

Summary statistics for the generation a satisfactory solution is found.

## # A tibble: 9 x 8
##   T     count na_cnt   min median  mean   max   IQR
##   <fct> <int>  <int> <int>  <dbl> <dbl> <int> <dbl>
## 1 2        50      0     1      1     1     1     0
## 2 4        50      0     1      1     1     1     0
## 3 8        50      0     1      1     1     1     0
## 4 16       50      0     1      1     1     1     0
## 5 32       50      0     1      1     1     1     0
## 6 64       50      0     1      1     1     1     0
## 7 128      50      0     1      1     1     1     0
## 8 256      50      0     1      1     1     1     0
## 9 512      50      0     1      1     1     1     0

3.4.4 Final satisfactory trait coverage

Satisfactory trait coverage found in the final population at 50,000 generations.

3.4.4.1 Stats

Summary statistics for the generation a satisfactory solution is found.

## # A tibble: 9 x 8
##   T     count na_cnt   min median  mean   max   IQR
##   <fct> <int>  <int> <int>  <dbl> <dbl> <int> <dbl>
## 1 2        50      0     1      1     1     1     0
## 2 4        50      0     1      1     1     1     0
## 3 8        50      0     1      1     1     1     0
## 4 16       50      0     1      1     1     1     0
## 5 32       50      0     1      1     1     1     0
## 6 64       50      0     1      1     1     1     0
## 7 128      50      0     1      1     1     1     0
## 8 256      50      0     1      1     1     1     0
## 9 512      50      0     1      1     1     1     0

3.5 Multi-path exploration results

Here we present the results for best performances and activation gene coverage found by each selection scheme parameter on the multi-path exploration diagnostic. 50 replicates are conducted for each scheme parameter explored.

3.5.1 Activation gene coverage over time

Activation gene coverage in a population over time. Data points on the graph is the average activation gene coverage across 50 replicates every 2000 generations. Shading comes from the best and worse coverage across 50 replicates.

## `summarise()` has grouped output by 'T'. You can override using the `.groups`
## argument.

3.5.2 Final activation gene coverage

Activation gene coverage found in the final population at 50,000 generations.

3.5.2.1 Stats

Summary statistics for the generation a satisfactory solution is found.

## # A tibble: 9 x 8
##   T     count na_cnt   min median  mean   max   IQR
##   <fct> <int>  <int> <int>  <dbl> <dbl> <int> <dbl>
## 1 2        50      0     2      2  2.92    12     1
## 2 4        50      0     2      2  2.06     3     0
## 3 8        50      0     1      2  1.98     3     0
## 4 16       50      0     1      2  1.94     2     0
## 5 32       50      0     1      2  2        3     0
## 6 64       50      0     1      2  1.96     3     0
## 7 128      50      0     1      2  2.04     3     0
## 8 256      50      0     1      2  2.02     3     0
## 9 512      50      0     1      2  2.02     3     0

Kruskal–Wallis test illustrates evidence of statistical differences.

## 
##  Kruskal-Wallis rank sum test
## 
## data:  uni_str_pos by T
## Kruskal-Wallis chi-squared = 80.365, df = 8, p-value = 4.127e-14

Results for post-hoc Wilcoxon rank-sum test with a Bonferroni correction.

## 
##  Pairwise comparisons using Wilcoxon rank sum test with continuity correction 
## 
## data:  act_coverage$uni_str_pos and act_coverage$T 
## 
##     2       4       8       16      32      64      128     256    
## 4   0.00066 -       -       -       -       -       -       -      
## 8   3.1e-05 1.00000 -       -       -       -       -       -      
## 16  6.0e-06 0.54531 1.00000 -       -       -       -       -      
## 32  0.00011 1.00000 1.00000 1.00000 -       -       -       -      
## 64  2.3e-05 1.00000 1.00000 1.00000 1.00000 -       -       -      
## 128 0.00048 1.00000 1.00000 1.00000 1.00000 1.00000 -       -      
## 256 0.00015 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 -      
## 512 0.00035 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
## 
## P value adjustment method: bonferroni

3.5.3 Performance over time

Best performance in a population over time. Data points on the graph is the average performance across 50 replicates every 2000 generations. Shading comes from the best and worse performance across 50 replicates.

## `summarise()` has grouped output by 'T'. You can override using the `.groups`
## argument.

3.5.4 Best performance throughout

Best performance reached throughout 50,000 generations in a population.

3.5.4.1 Stats

Summary statistics for the best performance.

## # A tibble: 9 x 8
##   T     count na_cnt   min median  mean   max   IQR
##   <fct> <int>  <int> <dbl>  <dbl> <dbl> <dbl> <dbl>
## 1 2        50      0  4      53.0  49.7  95.0  48.5
## 2 4        50      0  4      52.0  54.4  97.8  56.2
## 3 8        50      0  6      59.0  55.5  99.9  45.0
## 4 16       50      0  5      54.0  54.7  98.0  49.5
## 5 32       50      0  7.00   49.0  50.4  95.0  49.7
## 6 64       50      0  7      62.0  57.2 100.   35.2
## 7 128      50      0  6      38.0  45.7 100.   41.5
## 8 256      50      0  8      50.5  52.6  99.0  50.0
## 9 512      50      0  7.00   55.0  55.9  99.0  49.0

Kruskal–Wallis test illustrates evidence of no statistical differences.

## 
##  Kruskal-Wallis rank sum test
## 
## data:  val by T
## Kruskal-Wallis chi-squared = 6.8162, df = 8, p-value = 0.5566