Chapter 5 Multi-path exploration results

Here we present the results for best performances found by each selection scheme on the multi-path exploration diagnostic with valley crossing integrated. 50 replicates are conducted for each scheme explored.

5.2 Activation gene coverage over time

Activation gene coverage in a population over time. Data points on the graph is the average activation gene coverage across 50 replicates every 2000 generations. Shading comes from the best and worse coverage across 50 replicates.

## `summarise()` has grouped output by 'scheme'. You can override using the
## `.groups` argument.

5.3 Final activation gene coverage

Activation gene coverage found in the final population at 50,000 generations.

5.3.1 Stats

Summary statistics for the coverage found in the final population.

## # A tibble: 8 x 8
##   acro  count na_cnt   min median  mean   max   IQR
##   <fct> <int>  <int> <int>  <dbl> <dbl> <int> <dbl>
## 1 nov      50      0    68   79.5 79.9     92  6.75
## 2 lex      50      0    56   65   66.1     75  9   
## 3 nds      50      0     7   43   42.5     80 36.5 
## 4 tor      50      0     1    4    4.84    13  3.75
## 5 tru      50      0     1    4    4.9     15  4.75
## 6 pfs      50      0     2    4    4.4      7  1   
## 7 gfs      50      0     1    3    3        5  1.75
## 8 ran      50      0     1    2    2.02     6  2

Kruskal–Wallis test illustrates evidence of statistical differences.

## 
##  Kruskal-Wallis rank sum test
## 
## data:  uni_str_pos by acro
## Kruskal-Wallis chi-squared = 324.89, df = 7, p-value < 2.2e-16

Results for post-hoc Wilcoxon rank-sum test with a Bonferroni correction.

## 
##  Pairwise comparisons using Wilcoxon rank sum test with continuity correction 
## 
## data:  act_coverage$uni_str_pos and act_coverage$acro 
## 
##     nov     lex     nds     tor     tru     pfs     gfs    
## lex 1.4e-14 -       -       -       -       -       -      
## nds 8.1e-15 1.5e-06 -       -       -       -       -      
## tor < 2e-16 < 2e-16 < 2e-16 -       -       -       -      
## tru < 2e-16 < 2e-16 2.7e-16 1.000   -       -       -      
## pfs < 2e-16 < 2e-16 < 2e-16 1.000   1.000   -       -      
## gfs < 2e-16 < 2e-16 < 2e-16 0.011   0.157   3.8e-08 -      
## ran < 2e-16 < 2e-16 < 2e-16 3.7e-08 2.7e-06 1.3e-13 4.0e-05
## 
## P value adjustment method: bonferroni

5.4 Performance over time

Best performance in a population over time. Data points on the graph is the average performance across 50 replicates every 2000 generations. Shading comes from the best and worse performance across 50 replicates.

## `summarise()` has grouped output by 'scheme'. You can override using the
## `.groups` argument.

5.5 Best performance throughout

Best performance reached throughout 50,000 generations in a population.

5.5.1 Stats

Summary statistics for the best performance.

## # A tibble: 8 x 8
##   acro  count na_cnt   min median  mean   max   IQR
##   <fct> <int>  <int> <dbl>  <dbl> <dbl> <dbl> <dbl>
## 1 gfs      50      0 3.15  11.4   11.1  13.4  1.25 
## 2 pfs      50      0 7.23  11.0   10.8  12.8  0.949
## 3 tru      50      0 0.880  4.41   4.71  8.85 3.56 
## 4 tor      50      0 1.60   4.37   4.84  8.70 3.68 
## 5 nov      50      0 2.70   3.84   3.89  5.22 0.639
## 6 lex      50      0 2.60   3.44   3.45  4.21 0.523
## 7 nds      50      0 1.52   1.93   1.97  2.45 0.322
## 8 ran      50      0 0.780  0.998  1.06  1.60 0.261

Kruskal–Wallis test illustrates evidence of statistical differences.

## 
##  Kruskal-Wallis rank sum test
## 
## data:  val by acro
## Kruskal-Wallis chi-squared = 327.4, df = 7, p-value < 2.2e-16

Results for post-hoc Wilcoxon rank-sum test with a Bonferroni correction.

## 
##  Pairwise comparisons using Wilcoxon rank sum test with continuity correction 
## 
## data:  performance$val and performance$acro 
## 
##     gfs     pfs     tru     tor     nov     lex     nds    
## pfs 0.03925 -       -       -       -       -       -      
## tru 2.2e-14 < 2e-16 -       -       -       -       -      
## tor 2.4e-14 < 2e-16 1.00000 -       -       -       -      
## nov 2.1e-14 < 2e-16 1.00000 1.00000 -       -       -      
## lex 5.3e-15 < 2e-16 0.23671 0.04294 0.00042 -       -      
## nds < 2e-16 < 2e-16 5.5e-10 8.2e-13 < 2e-16 < 2e-16 -      
## ran < 2e-16 < 2e-16 1.4e-15 < 2e-16 < 2e-16 < 2e-16 < 2e-16
## 
## P value adjustment method: bonferroni

5.6 Largest valley reached throughout

The largest valley reached in a single trait throughout an entire evolutionary run. To collect this value, we look through all the best-performing solutions each generation and find the largest valley reached.

5.6.1 Stats

Summary statistics for the largest valley crossed.

## # A tibble: 8 x 8
##   acro  count na_cnt   min median  mean   max   IQR
##   <fct> <int>  <int> <dbl>  <dbl> <dbl> <dbl> <dbl>
## 1 pfs      50      0    14     14 14       14  0   
## 2 gfs      50      0    11     13 12.9     14  0   
## 3 ran      50      0     9     10 10.2     13  0.75
## 4 nov      50      0     9     10  9.98    11  0   
## 5 nds      50      0     7      8  7.88     9  0   
## 6 lex      50      0     5      5  5.44     6  1   
## 7 tru      50      0     4      5  5        6  0   
## 8 tor      50      0     4      5  5        6  0

Kruskal–Wallis test illustrates evidence of statistical differences.

## 
##  Kruskal-Wallis rank sum test
## 
## data:  val by acro
## Kruskal-Wallis chi-squared = 385.68, df = 7, p-value < 2.2e-16

Results for post-hoc Wilcoxon rank-sum test with a Bonferroni correction.

## 
##  Pairwise comparisons using Wilcoxon rank sum test with continuity correction 
## 
## data:  valleys$val and valleys$acro 
## 
##     pfs     gfs     ran     nov     nds     lex     tru
## gfs < 2e-16 -       -       -       -       -       -  
## ran < 2e-16 < 2e-16 -       -       -       -       -  
## nov < 2e-16 < 2e-16 1       -       -       -       -  
## nds < 2e-16 < 2e-16 < 2e-16 < 2e-16 -       -       -  
## lex < 2e-16 < 2e-16 < 2e-16 < 2e-16 < 2e-16 -       -  
## tru < 2e-16 < 2e-16 < 2e-16 < 2e-16 < 2e-16 7.6e-06 -  
## tor < 2e-16 < 2e-16 < 2e-16 < 2e-16 < 2e-16 7.6e-06 1  
## 
## P value adjustment method: bonferroni