Chapter 2 Exploitation rate results

Here we present the results for best performances found by each selection scheme on the exploitation rate diagnostic with valley crossing integrated. 50 replicates are conducted for each scheme explored.

2.2 Performance over time

Best performance in a population over time. Data points on the graph is the average performance across 50 replicates every 2000 generations. Shading comes from the best and worse performance across 50 replicates.

## `summarise()` has grouped output by 'scheme'. You can override using the
## `.groups` argument.

2.3 Best performance throughout

Best performance reached throughout 50,000 generations in a population.

2.3.1 Stats

Summary statistics for the best performance.

## # A tibble: 8 x 8
##   acro  count na_cnt   min median  mean   max    IQR
##   <fct> <int>  <int> <dbl>  <dbl> <dbl> <dbl>  <dbl>
## 1 gfs      50      0  41.2   42.9  42.9  44.9 1.05  
## 2 pfs      50      0  40.2   43.1  42.9  44.8 1.28  
## 3 nov      50      0  16.0   18.6  18.6  20.9 1.07  
## 4 tru      50      0  17.8   18.1  18.1  18.3 0.123 
## 5 tor      50      0  17.9   18.1  18.1  18.3 0.0974
## 6 nds      50      0  14.7   15.3  15.4  16.1 0.378 
## 7 ran      50      0  11.1   13.0  13.1  15.7 1.39  
## 8 lex      50      0  12.5   12.7  12.7  13.1 0.128

Kruskal–Wallis test illustrates evidence of statistical differences.

## 
##  Kruskal-Wallis rank sum test
## 
## data:  val by acro
## Kruskal-Wallis chi-squared = 366.61, df = 7, p-value < 2.2e-16

Results for post-hoc Wilcoxon rank-sum test with a Bonferroni correction.

## 
##  Pairwise comparisons using Wilcoxon rank sum test with continuity correction 
## 
## data:  performance$val and performance$acro 
## 
##     gfs     pfs     nov     tru     tor     nds     ran   
## pfs 1.0000  -       -       -       -       -       -     
## nov < 2e-16 < 2e-16 -       -       -       -       -     
## tru < 2e-16 < 2e-16 0.0014  -       -       -       -     
## tor < 2e-16 < 2e-16 0.0026  1.0000  -       -       -     
## nds < 2e-16 < 2e-16 < 2e-16 < 2e-16 < 2e-16 -       -     
## ran < 2e-16 < 2e-16 < 2e-16 < 2e-16 < 2e-16 1.2e-14 -     
## lex < 2e-16 < 2e-16 < 2e-16 < 2e-16 < 2e-16 < 2e-16 1.0000
## 
## P value adjustment method: bonferroni

2.4 Largest valley reached throughout

The largest valley reached in a single trait throughout an entire evolutionary run. To collect this value, we look through all the best-performing solutions each generation and find the largest valley reached.

2.4.1 Stats

Summary statistics for the largest valley crossed.

## # A tibble: 8 x 8
##   acro  count na_cnt   min median  mean   max   IQR
##   <fct> <int>  <int> <dbl>  <dbl> <dbl> <dbl> <dbl>
## 1 gfs      50      0    12   13   13.4     14  1   
## 2 pfs      50      0    12   13.5 13.5     14  1   
## 3 nds      50      0    10   11   11.2     13  0   
## 4 nov      50      0    10   10   10.5     11  1   
## 5 ran      50      0     9   10   10.1     12  0.75
## 6 lex      50      0     6    7    6.8      8  0   
## 7 tru      50      0     5    6    5.92     6  0   
## 8 tor      50      0     5    6    5.94     6  0

Kruskal–Wallis test illustrates evidence of statistical differences.

## 
##  Kruskal-Wallis rank sum test
## 
## data:  val by acro
## Kruskal-Wallis chi-squared = 377.23, df = 7, p-value < 2.2e-16

Results for post-hoc Wilcoxon rank-sum test with a Bonferroni correction.

## 
##  Pairwise comparisons using Wilcoxon rank sum test with continuity correction 
## 
## data:  valleys$val and valleys$acro 
## 
##     gfs     pfs     nds     nov     ran     lex     tru  
## pfs 1.000   -       -       -       -       -       -    
## nds < 2e-16 < 2e-16 -       -       -       -       -    
## nov < 2e-16 < 2e-16 3.9e-08 -       -       -       -    
## ran < 2e-16 < 2e-16 2.1e-10 0.099   -       -       -    
## lex < 2e-16 < 2e-16 < 2e-16 < 2e-16 < 2e-16 -       -    
## tru < 2e-16 < 2e-16 < 2e-16 < 2e-16 < 2e-16 4.6e-14 -    
## tor < 2e-16 < 2e-16 < 2e-16 < 2e-16 < 2e-16 4.3e-14 1.000
## 
## P value adjustment method: bonferroni