Chapter 3 Ordered exploitation results

Here we present the results for best performances found by each selection scheme on the ordered exploitation diagnostic. 50 replicates are conducted for each scheme explored.

3.2 Performance over time

Best performance in a population over time. Data points on the graph is the average performance across 50 replicates every 2000 generations. Shading comes from the best and worse performance across 50 replicates.

## `summarise()` has grouped output by 'scheme'. You can override using the
## `.groups` argument.

3.3 Best performance throughout

Best performance reached throughout 50,000 generations in a population.

3.3.1 Stats

Summary statistics for the best performance.

## # A tibble: 8 x 8
##   acro  count na_cnt     min  median    mean    max     IQR
##   <fct> <int>  <int>   <dbl>   <dbl>   <dbl>  <dbl>   <dbl>
## 1 tru      50      0 100.    100.    100.    100.   0.00168
## 2 tor      50      0  99.9    99.9    99.9    99.9  0.00650
## 3 lex      50      0  99.7    99.8    99.8    99.9  0.0247 
## 4 nds      50      0  23.7    25.7    25.7    27.3  0.972  
## 5 gfs      50      0  19.7    21.0    21.0    22.6  0.754  
## 6 pfs      50      0  12.2    13.8    13.7    14.9  0.712  
## 7 nov      50      0   3.00    3.90    4.00    5.83 0.666  
## 8 ran      50      0   0.318   0.569   0.605   1.31 0.279

Kruskal–Wallis test illustrates evidence of statistical differences.

## 
##  Kruskal-Wallis rank sum test
## 
## data:  val by acro
## Kruskal-Wallis chi-squared = 392.77, df = 7, p-value < 2.2e-16

Results for post-hoc Wilcoxon rank-sum test with a Bonferroni correction.

## 
##  Pairwise comparisons using Wilcoxon rank sum test with continuity correction 
## 
## data:  performance$val and performance$acro 
## 
##     tru    tor    lex    nds    gfs    pfs    nov   
## tor <2e-16 -      -      -      -      -      -     
## lex <2e-16 <2e-16 -      -      -      -      -     
## nds <2e-16 <2e-16 <2e-16 -      -      -      -     
## gfs <2e-16 <2e-16 <2e-16 <2e-16 -      -      -     
## pfs <2e-16 <2e-16 <2e-16 <2e-16 <2e-16 -      -     
## nov <2e-16 <2e-16 <2e-16 <2e-16 <2e-16 <2e-16 -     
## ran <2e-16 <2e-16 <2e-16 <2e-16 <2e-16 <2e-16 <2e-16
## 
## P value adjustment method: bonferroni

3.4 Generation satisfactory solution found

First generation a satisfactory solution is found throughout the 50,000 generations.

3.4.1 Stats

Summary statistics for the generation a satisfactory solution is found.

## # A tibble: 3 x 8
##   acro  count na_cnt   min median   mean   max   IQR
##   <fct> <int>  <int> <int>  <dbl>  <dbl> <int> <dbl>
## 1 tru      50      0 14776 15585  15570. 16317  420.
## 2 tor      50      0 25996 27138  27105. 28495  913.
## 3 lex      50      0 33877 38288. 38265. 43565 2215.

Kruskal–Wallis test illustrates evidence of statistical differences.

## 
##  Kruskal-Wallis rank sum test
## 
## data:  gen by acro
## Kruskal-Wallis chi-squared = 132.45, df = 2, p-value < 2.2e-16

Results for post-hoc Wilcoxon rank-sum test with a Bonferroni correction.

## 
##  Pairwise comparisons using Wilcoxon rank sum test with continuity correction 
## 
## data:  ssf$gen and ssf$acro 
## 
##     tru    tor   
## tor <2e-16 -     
## lex <2e-16 <2e-16
## 
## P value adjustment method: bonferroni

3.5 Streaks over time

Longest streak of active geens for the best solution found in a population over time. A maximum streak value of 100 and a minimum streak value of 1 is possible. Data points on the graph is the average streak across 50 replicates every 2000 generations. Shading comes from the best and worse streak across 50 replicates.

## `summarise()` has grouped output by 'scheme'. You can override using the
## `.groups` argument.

3.6 Longest streak throughout

Longest streak of the best solution found in the population throughout 50,000 generations.

3.6.1 Stats

Summary statistics for the longest streak

## # A tibble: 5 x 8
##   acro  count na_cnt   min median  mean   max   IQR
##   <fct> <int>  <int> <dbl>  <dbl> <dbl> <dbl> <dbl>
## 1 nds      50      0    28   36   36.2     43  4   
## 2 gfs      50      0    25   33.5 33.4     40  5.75
## 3 pfs      50      0    17   25   24.8     32  4   
## 4 nov      50      0    13   16   16.3     21  3   
## 5 ran      50      0     6    7    7.18    10  2

Kruskal–Wallis test illustrates evidence of statistical differences.

## 
##  Kruskal-Wallis rank sum test
## 
## data:  val by acro
## Kruskal-Wallis chi-squared = 226.43, df = 4, p-value < 2.2e-16

Results for post-hoc Wilcoxon rank-sum test with a Bonferroni correction.

## 
##  Pairwise comparisons using Wilcoxon rank sum test with continuity correction 
## 
## data:  streak$val and streak$acro 
## 
##     nds     gfs     pfs     nov    
## gfs 0.0017  -       -       -      
## pfs < 2e-16 2.7e-15 -       -      
## nov < 2e-16 < 2e-16 3.1e-16 -      
## ran < 2e-16 < 2e-16 < 2e-16 < 2e-16
## 
## P value adjustment method: bonferroni