Chapter 2 Exploitation rate results

Here we present the results for best performances found by each selection scheme on the exploitation rate diagnostic. 50 replicates are conducted for each scheme explored.

2.2 Performance over time

Best performance in a population over time. Data points on the graph is the average performance across 50 replicates every 2000 generations. Shading comes from the best and worse performance across 50 replicates.

## `summarise()` has grouped output by 'scheme'. You can override using the
## `.groups` argument.

2.3 Best performance throughout

Best performance reached throughout 50,000 generations in a population.

2.3.1 Stats

Summary statistics for the best performance.

## # A tibble: 8 x 8
##   acro  count na_cnt   min median  mean   max    IQR
##   <fct> <int>  <int> <dbl>  <dbl> <dbl> <dbl>  <dbl>
## 1 tru      50      0 100    100   100   100   0     
## 2 tor      50      0 100    100   100   100   0     
## 3 lex      50      0  99.9   99.9  99.9  99.9 0.0154
## 4 gfs      50      0  57.3   59.3  59.4  61.1 0.984 
## 5 pfs      50      0  57.6   59.4  59.5  61.0 1.02  
## 6 nov      50      0  17.1   19.5  19.5  23.9 1.95  
## 7 nds      50      0  18.0   18.6  18.7  20.1 0.603 
## 8 ran      50      0  13.4   15.9  15.8  17.5 1.46

Kruskal–Wallis test illustrates evidence of statistical differences.

## 
##  Kruskal-Wallis rank sum test
## 
## data:  val by acro
## Kruskal-Wallis chi-squared = 385.26, df = 7, p-value < 2.2e-16

Results for post-hoc Wilcoxon rank-sum test with a Bonferroni correction.

## 
##  Pairwise comparisons using Wilcoxon rank sum test with continuity correction 
## 
## data:  performance$val and performance$acro 
## 
##     tru    tor    lex    gfs    pfs    nov    nds   
## tor 1.000  -      -      -      -      -      -     
## lex <2e-16 <2e-16 -      -      -      -      -     
## gfs <2e-16 <2e-16 <2e-16 -      -      -      -     
## pfs <2e-16 <2e-16 <2e-16 1.000  -      -      -     
## nov <2e-16 <2e-16 <2e-16 <2e-16 <2e-16 -      -     
## nds <2e-16 <2e-16 <2e-16 <2e-16 <2e-16 0.018  -     
## ran <2e-16 <2e-16 <2e-16 <2e-16 <2e-16 <2e-16 <2e-16
## 
## P value adjustment method: bonferroni

2.4 Generation satisfactory solution found

First generation a satisfactory solution is found throughout the 50,000 generations.

2.4.1 Stats

Summary statistics for the generation a satisfactory solution is found.

## # A tibble: 3 x 8
##   acro  count na_cnt   min median   mean   max    IQR
##   <fct> <int>  <int> <int>  <dbl>  <dbl> <int>  <dbl>
## 1 tru      50      0  3392  3422   3423.  3475   26  
## 2 tor      50      0  5390  5444.  5447.  5509   43.2
## 3 lex      50      0 24036 25626. 25883. 31709 1739.

Kruskal–Wallis test illustrates evidence of statistical differences.

## 
##  Kruskal-Wallis rank sum test
## 
## data:  gen by acro
## Kruskal-Wallis chi-squared = 132.46, df = 2, p-value < 2.2e-16

Results for post-hoc Wilcoxon rank-sum test with a Bonferroni correction.

## 
##  Pairwise comparisons using Wilcoxon rank sum test with continuity correction 
## 
## data:  ssf$gen and ssf$acro 
## 
##     tru    tor   
## tor <2e-16 -     
## lex <2e-16 <2e-16
## 
## P value adjustment method: bonferroni