Chapter 5 Multi-path exploration results

Here we present the results for best performances and activation gene coverage found by each selection scheme on the multi-path exploration diagnostic. 50 replicates are conducted for each scheme explored.

5.2 Activation gene coverage over time

Activation gene coverage in a population over time. Data points on the graph is the average activation gene coverage across 50 replicates every 2000 generations. Shading comes from the best and worse coverage across 50 replicates.

## `summarise()` has grouped output by 'scheme'. You can override using the
## `.groups` argument.

5.3 Final activation gene coverage

Activation gene coverage found in the final population at 50,000 generations.

5.3.1 Stats

Summary statistics for the coverage found in the final population.

## # A tibble: 8 x 8
##   acro  count na_cnt   min median  mean   max   IQR
##   <fct> <int>  <int> <int>  <dbl> <dbl> <int> <dbl>
## 1 nov      50      0    71   85.5 85.4     96  7.75
## 2 lex      50      0    25   31   31.1     37  4   
## 3 nds      50      0     5    9   10.2     20  3   
## 4 gfs      50      0     2    3    3.48     5  1   
## 5 pfs      50      0     2    2.5  2.5      3  1   
## 6 ran      50      0     1    2    2.16     5  2   
## 7 tor      50      0     1    2    2.04     3  0   
## 8 tru      50      0     1    2    1.98     2  0

Kruskal–Wallis test illustrates evidence of statistical differences.

## 
##  Kruskal-Wallis rank sum test
## 
## data:  uni_str_pos by acro
## Kruskal-Wallis chi-squared = 350.25, df = 7, p-value < 2.2e-16

Results for post-hoc Wilcoxon rank-sum test with a Bonferroni correction.

## 
##  Pairwise comparisons using Wilcoxon rank sum test with continuity correction 
## 
## data:  act_coverage$uni_str_pos and act_coverage$acro 
## 
##     nov     lex     nds     gfs     pfs     ran tor
## lex < 2e-16 -       -       -       -       -   -  
## nds < 2e-16 < 2e-16 -       -       -       -   -  
## gfs < 2e-16 < 2e-16 < 2e-16 -       -       -   -  
## pfs < 2e-16 < 2e-16 < 2e-16 3.6e-10 -       -   -  
## ran < 2e-16 < 2e-16 < 2e-16 9.4e-08 0.4     -   -  
## tor < 2e-16 < 2e-16 < 2e-16 < 2e-16 1.2e-05 1.0 -  
## tru < 2e-16 < 2e-16 < 2e-16 < 2e-16 1.1e-07 1.0 1.0
## 
## P value adjustment method: bonferroni

5.4 Performance over time

Best performance in a population over time. Data points on the graph is the average performance across 50 replicates every 2000 generations. Shading comes from the best and worse performance across 50 replicates.

## `summarise()` has grouped output by 'scheme'. You can override using the
## `.groups` argument.

5.5 Best performance throughout

Best performance reached throughout 50,000 generations in a population.

5.5.1 Stats

Summary statistics for the best performance.

## # A tibble: 8 x 8
##   acro  count na_cnt    min median  mean   max    IQR
##   <fct> <int>  <int>  <dbl>  <dbl> <dbl> <dbl>  <dbl>
## 1 lex      50      0 83.4    92.3  91.9  98.1   5.51 
## 2 tru      50      0 16      66.0  61.1  99.0  47.0  
## 3 tor      50      0  5      47.0  48.9  97.9  46.2  
## 4 gfs      50      0  4.99   20.7  19.3  21.7   1.45 
## 5 nds      50      0 12.0    19.9  19.7  22.8   1.72 
## 6 pfs      50      0  5.87   13.6  13.2  15.9   1.39 
## 7 nov      50      0  2.52    3.83  3.87  5.33  0.793
## 8 ran      50      0  0.865   1.19  1.23  1.72  0.247

Kruskal–Wallis test illustrates evidence of statistical differences.

## 
##  Kruskal-Wallis rank sum test
## 
## data:  val by acro
## Kruskal-Wallis chi-squared = 356.22, df = 7, p-value < 2.2e-16

Results for post-hoc Wilcoxon rank-sum test with a Bonferroni correction.

## 
##  Pairwise comparisons using Wilcoxon rank sum test with continuity correction 
## 
## data:  performance$val and performance$acro 
## 
##     lex     tru     tor     gfs     nds     pfs     nov    
## tru 4.4e-09 -       -       -       -       -       -      
## tor 1.1e-12 0.33    -       -       -       -       -      
## gfs < 2e-16 2.3e-13 4.3e-07 -       -       -       -      
## nds < 2e-16 1.2e-13 6.8e-07 0.47    -       -       -      
## pfs < 2e-16 < 2e-16 5.0e-12 2.3e-11 1.3e-15 -       -      
## nov < 2e-16 < 2e-16 < 2e-16 < 2e-16 < 2e-16 < 2e-16 -      
## ran < 2e-16 < 2e-16 < 2e-16 < 2e-16 < 2e-16 < 2e-16 < 2e-16
## 
## P value adjustment method: bonferroni